Modicon
Compact 984
Ladder Logic
Manual

043503387

Modicon
Compact 984
Ladder Logic
Manual

043503387

April, 1993

MODICON, Inc., Industrial Automation Systems
One High Street
North Andover, Massachusetts 01845

Preface

The data and illustrations in this book
are not binding. We reserve the right to
modify our products in line with our
policy of continuous product improve-
ment. Information in this document is
subject to change without notice and
should not be construed as a commit-
ment by Modicon, Industrial Automation
Systems. Modicon, Inc. assumes no
responsibility for any errors that may
appear in this document.

No part of this document may be re-
produced in any form or by any means,
electronic or mechanical, without the
express written permission of Modicon,
Inc., Industrial Automation Systems. All
rights reserved.

Modbus is a trademark of Modicon, Inc.

MODSOFT® Lite is a registered trade-
mark of Modicon, Inc.

Copyright© 1993 by Modicon, Inc. All
rights reserved.

GM-A120-LDR

Preface

Contents

Chapter 1 Compact Controllers

The Compact Controllers

Common 984 Architecture
Ladder Logic Programmingot

A120 I/O Support
Power Supplies

Auxiliary Memory Upload-Download Capabilities
Relocating Logic from One 984 to Another

Relocating 984 Logic .

Compact CPU and User Memory Choices

User Memory
Reference Numbering

Logic Elements and Instructions

Chapter 2 Modbus

Plus

Modbus Plus Capability for the Compact-984 Controller
Modbus Plus Token Rotation
How the 984-145 Initiates Modbus Plus Transactions

Modbus Plus Node Addressing ...,

Bridge Mode Between Modbus and Modbus Plus

The Standard Modbus

Setting L

The Modbus Plus Bridge Mode Setting

Addressing Ranges on

Modbus Plus

Modbus Plus Address Routing Schemes
Destination Device Requirements
Direct, Explicit, and Implicit Attaches
Modbus Plus Communication Paths
Four Types of CommunicationPaths

Chapter 3 Essentials of Ladder Logic

Programming ..
Segments and Networks

GM-A120-LDR

NoonooapPrOowWwWwWODDND =

11

12
13
14
16
16
16
17
18
18
20
21
21

23
24

Contents

\"

Ladder LogicSegments i 24

Ladder Logic Networks i, 24

Placing Relay Logic and Instructions in a Network 24

How Ladder Logicls Solved 25
Relay LogicElements L 26

Relay Contacts 26

Normal and Memory-retentive Coils 27

Vertical and Horizontal Shorts 27
Application Example:

A Motor Start/Stop Circuit 29
Chapter 4 Countersand Timers 31
Counter Instructions i 32
Timer Instructions 33
Application Example: Logic for a Real-time Clock 34
Chapter 5 Basic Math Instructions 35
Integer Math Instructions L 36

Application Example: Fahrenheit-to-Centigrade Conversion . .. 38

Chapter 6 Data Management Instructions 39
Moving Registerand Table Data 40
Buildinga FIFOStackcco i 42
SearchingaTable i i 44
MovingaBlockofData il 45
Chapter 7 Data Manipulation Instructions 47
Boolean Logic Instructions oL 48
An Application Example: Simple Table Averaging 51
Bit Complementing in a Data Matrix 52
Bit Comparisonina DataMatrix 53
Sensing and Manipulating Bits in a Data Matrix 54
Chapter 8 The MSTR Instruction 57
OVEIVIBW . . ot 58
MSTR Function Error Codes it 60
Read and Write MSTR Functions 61
Get Local Statisticsco i, 62
Clear Local Statistics 62
Write Global Data i, 63
Read Global Data, 63
Get Remote Statisticsc.cco ... 64

Vi Contents GM-A120-LDR

Clear Remote Statisticsc. i iiininn. 64

Read Peer Cop Communication Health 65
Network Statistics 67
Chapter 9 Other Standard Instructions 71
Skipping Networks 72
Checking Compact Health Status 73
The Subroutine Instructions 77
Sweep Instructions 79
Chapter 10 Enhanced Instructions 81
BlockeTable Move Instructions 82
The Checksum Instruction, 83
The Proportional-Integral-Derivative Instruction 84
Extended Math Instructions 89

GM-A120-LDR Contents Vii

Chapter 1
Compact Controllers

o The Compact Controllers
0 Relocating Logic from One 984 to Another
0 Compact CPU and User Memory Choices

0 Logic Elements and Instructions

GM-A120-LDR Compact Controllers

The Compact Controllers

Modicon’s Compact Programmable Log-
ic Controllers bring the high perform-
ance, application flexibility, and pro-
gramming compatibility of the 984 family
to the small controller market. Like oth-
er controllers in the 984 family, the
Compacts implement a common instruc-
tion set for developing user logic, along
with Modbus and optional Modbus Plus
communication capabilities.

Common 984 Architecture

The Compact Controllers share the fol-
lowing processing architecture with all
other controllers in the 984 family:

O A memory section that stores user
logic, I/O tables, and system over-
head in battery-backed CMOS RAM
and holds the system’s Executive
firmware in nonvolatile EPROM

0 A CPU section that solves the user
logic program based on the current
input values in state RAM, then up-
dates the output values in state RAM

0 An I/O processing section that directs
the flow of signals from input mod-
ules to state RAM and provides a
path over which output signals from
the CPU’s logic solve are sent to the
output modules

0 A communications section that pro-
vides one or more port interfaces.
These interfaces allow the controller
to communicate with programming
panels, host computers, hand-held
diagnostic tools and other master de-
vices, as well as with additional con-
trollers and other nodes on a Mod-
bus (or Modbus Plus) network

984 Compact Controller
CPU
Memory
State RAM User Logic
Register Ins Ladder logic
Register Outs networks &
Discrete Ins segments
from Application Discrete Outs
Sensing Devices
Input Output
— 3| Modules |—| 3 /O Processor 3| Modules |—
to Application
Communications Processor Switching Devices
ﬁ
¢
Peripheral Other Nodes
(Host) Devices on a Network

2 Compact Controllers

GM-A120-LDR

PRE

This architectural consistency allows the
Compact Controllers to achieve ma-
chine compatibility with the other con-
trollers in the family. This means that
user logic created on a midrange or
high performance controller—such as a
984-685 or a 984B Controller—can be
relocated to a Compact if the specifica-
tions of the Compact are not exceeded.
Also, user logic you generate for the
small controller is upwardly compatible
to a larger 984. It also means that a
Compact can be easily integrated into a
multi-controller network.

Ladder Logic Programming

All 984 Controllers can be programmed
via ladder logic, a powerful and highly
graphical language for control opera-
tions. A database of standard ladder
logic instructions is stored in the system
Executive.

A120 I/O Support

The Compact Controllers work with Mo-
dicon’s low-cost series of A120 |/O
modules. A120 modules are available
in various densities of discrete 1/O
points and various numbers of analog I/
O channels. For detailed descriptions
of available A120 modules, see the
A120 Series I/0O Modules User Guide
(GM-A984-10S).

Each module uses a standardized pair
of screw-type terminal blocks that facili-
tate easy access and easy field wiring.
Because the terminal blocks are stan-
dardized and removeable, they allow
you to make module changes without
disturbing connections.

A tool (AS-0TBP-000) to facilitate the
removal of terminal blocks is shipped
with the Compact.

GM-A120-LDR

Power Supplies

The Compact Controllers have a built-in
5 VDC power supply that provides up to
2.5 A across the 1/O bus to all I/O mod-
ules in the system.

An external 24 VDC source (-15% to
+20% range, 1 A minimum) must be
connected to the Compact to power the
system. If you are operating in an all-
AC environment, you can use the
AS-P120-000 Power Supply to convert
AC source power to 24 VDC.

Some A120 I/O modules require an
external 24 VDC supply, and others
require an external 115 or 230 VAC

supply.

Auxiliary Memory Upload-
Download Capabilities

All Compact Controllers contain an aux-
iliary memory socket for a credit card-
sized EEPROM card. You can write the
current system configuration and user
logic program to an EEPROM card
while the controller is stopped and read
the data back to the controller from the
EEPROM card as part of the power-up
sequence. This utility allows you to re-
cord, store, and reload applications us-
ing an easily accessible medium.

Compact Controllers 3

Relocating Logic from One 984 to
Another

The only constraints on logic relocation The select p.c to File command

are that the program in the source con- from the pulldown menu saves the con-
troller must generate logic that imple- tents of the target controller in a file.
ments only instructions acceptable to The File to pLc command from the
the target controller, and that the size of pulldown loads the contents of the file
the source logic program must not ex- to a target controller.

ceed the memory limits of the target

controller.

PLC to File
Verify All
File to PLC

Relocating 984 Logic

Ladder logic from one 984 controller
can be easily downloaded to another
984 using your panel software—e.g.,
MODSOFT Lite. First you upload the
source program to your programming
panel by selecting pLc on the main
menu, then selecting Transfer from the
top level menu line.

4 Compact Controllers GM-A120-LDR

PRE

Compact CPU and User Memory

Choices

Several Compact models are currently
available with different user memory
sizes and various comm port offerings:

0 The 984-120 CPU with 1.5K words of
user memory and one Modbus
communication port

0 The 984-130 CPU with 4K words of
user memory and one Modbus
communication port

O The 984-131 CPU with 4K words of
user memory and two Modbus
communication ports

0 The 984-141 CPU with 8K words of
user memory and two Modbus com-
munication ports

o The 984-145 CPU with 8K words of
user memory, one Modbus port, and
one Modbus Plus network interface

User Memory

User memory is the amount of memory
space (one word comprises 16 bits)
provided for your user logic program
and for the system overhead. Approxi-
mately 1K of user memory is used for
system overhead, and the remaining
words are available for application logic.

An additional 2048 (16-bit) words are
provided for state RAM—up to 1920
words can be used for register/analog
inputs, outputs, and internal data stor-
age while the remainder is dedicated to
discrete 1/0. Up to 2048 bits can be
used for discrete inputs, outputs, and in-
ternal coils.

All Compact models provide up to 256
points of 1/0O under local control.

All Compact models solve logic at the
rate of 4.25 ... 6 ms/K nodes of stan-
dard ladder logic.

GM-A120-LDR

Reference Numbering

For ladder logic programming, the Com-
pact Controllers use a reference num-
bering system to handle input/output in-
formation and internal logic. Each
reference number has a leading digit
that identifies the 1/O data type; the
leading digit is followed by a string of
four digits that defines that 1/O point’s
unique location in user data memory.

There are four reference types:

1/0 Reference Numbering System

Reference
Number Description

0xxXxXX A discrete output (or coil). A Ox reference

can be used to drive real output data through
an output unit in the control system or it can
be used to set one or more coils in state
RAM. A specific Ox reference may be used
only once as a coil in a logic program, but that
coil status may be used multiple times to drive|
contacts in the program

1Xxxx A discrete input. The ON/OFF status of a
1x reference is controlled by field data sent
to the CPU from an input unit. It can be
used to drive contacts in a logic program

3xxxx An input register. A 3x register holds infor-
mation represented by A 16-bit number and
received from an external source—e.g., a
thumbwheel, an analog signal, data from a
high speed counter. A 3x register can also
hold 16 consecutive discrete input signals,
which may be entered into the register in
binary or binary coded decimal (BCD)
format.

Axxxx An output or holding register. A 4x register
may be used to store numerical data (binary
or decimal) in state RAM or to send the data
from the CPU to an output unit in the control
system.

Note:The x following the leading character in each refer-
ence type represents a four-digit address location in user
data memory—e.g., the reference 40201 indicates that
the reference is a 16-bit output or holding register located
at address 201 in state RAM.

Compact Controllers 5

Each word in user memory is 16 bits
long. The (ON/OFF) state of each dis-
crete /O point is represented by the 1
or 0 value assigned to an individual bit
in a word (16 Ox or 1x references per
word).

Physical input points
01 02 03 04 05 06 07 08 09 10 11 1213 14 15 16

i User memory i
references

Discrete outputs are traffic copped to 0x
registers in a similar way

In the case of analog I/O, each input
channel and each output channel is traf-
fic copped to a full word in user data
memory (3x registers for inputs and 4x
registers for outputs).

6 Compact Controllers

GM-A120-LDR

PRE

Logic Elements and Instructions

Standard Ladder Logic Programming Elements

Symbol Meaning
-11- A normally open contact
-N\- A normally closed contact

s

A positive transitional contact

11

A negative transitional contact

A normal coil

A latched coil

Compact Instruction Set

Counter and Timer Instructions (Two-Node Functions)

Instruction Meaning
UCTR Counts up from 0 to a preset value
DCTR Counts down from a preset value to 0
T1.0 Timer that measures in seconds
TO.1 Timer that measures in tenths of a second
T.01 Timer that measures in hundredths of a second

Calculation Instructions (Three-Node Functions)

Instruction Meaning
ADD Adds top node value to middle node value
SuB Subtracts middle node value from top node value
MuUL Multiplies top node value by middle node value
DIV Divides top node value by middle node value

DX Move Instructions (Three-Node Functions)

Instruction Meaning

R—T Moves register values to a table

T—R Moves table values to a register

T—T Moves a specified set of values from one table to
another table

BLKM Moves a specified block of data

TBLK Moves a block of data from a table to another
specified block area

BLKT Moves a block of registers to specified locations in a table

FIN First-in operation to a queue

FOUT First-out operation from a queue

SRCH Performs a table search for a value

STAT Displays system status from locations in the controller’s
memory

GM-A120-LDR

Compact Controllers

7

Compact Instruction Set (concluded)

DX Matrix Instructions (Three-Node Functions)

Instruction Meaning
AND Logically ANDs two matrices
OR Does logical inclusive OR of two matrices
XOR Does logical exclusive OR of two matrices
COMP Performs the logical complement of values in a matrix
CMPR Logically compares the values in two matrices
MBIT Logical bit modify
SENS Logical bit sense
BROT Logical bit rotate
CKSM Performs one of four possible checksum operations (This

function is not available on the 984-145 Controller.)

Skip-Node Instruction (One-Node Function)

Instruction Meaning

SKP Skips a specified number of networks in ladder logic

Ladder Logic Subroutine Instructions (One- and Two-Node Functions)

Instruction Meaning
JSR Jumps from scheduled logic scan to a ladder logic subroutine
LAB Labels the entry point of a ladder logic subroutine
RET Returns from the subroutine to scheduled logic

PID Instruction (Three-Node Function)

Instruction Meaning

PID2 Performs a specified proportional-integral-derivative function

Enhanced Math (Three-Node Function)

Instruction Meaning

EMTH Performs 38 math operations, including floating point math
operations and extra integer math operations such as
square root

Modbus Plus Networking Instruction (Three-Node Function)

Instruction Meaning

MSTR Specifies a function from a menu of networking operations
(This function is available only on the 984-145 Controller,
which supports Modbus Plus communications.)

The following chapters of this book pro-
vide more details on the usage of these
standard ladder logic elements and
instructions.

8 Compact Controllers

GM-A120-LDR

PRE

Loadable Instructions

The Compact Controllers also support
various loadable instructions, including:

0 EARS, a tool for developing an early
alarm reporting system (see Event
Alarm Reporting System User
Guide, GM-EARS-001)

0 EUCA, an engineering unit conver-
sion algorithm (see EUCA Loadable
Function Block User Guide,
GM-EUCA-001)

0 FNxx, user-designed loadable in-
structions created with our custom
loadable tool (see Custom Loadable
Support Software Programming
Manual, GM-CLSS-001)

0 DRUM and ICMP, which can be used
to create control logic for tenor drum
sequencing applications (see Drum
Sequencer Demo S/W User Guide,
GI-0984-SAS)

0 HLTH, which creates history and sta-
tus matrices that can be programmed
to alert a user to changes in a PLC
system (see Health Loadable User
Guide, GM-HLTH-001)

GM-A120-LDR

Compact Controllers

9

Chapter 2
Modbus Plus

]

Modbus Plus Capability for the Compact-984 Controller

]

Modbus Plus Node Addressing

]

Bridge Mode Between Modbus and Modbus Plus

]

Modbus Plus Address Routing Schemes

]

Direct, Explicit, and Implicit Attaches

]

Modbus Plus Communication Paths

GM-A120-LDR Modbus Plus

"

Modbus Plus Capability for the
Compact-984 Controller

Modbus Plus is a local area network de-
signed for industrial control applications.
It enables the 984-145 Controller to be-
come a node on the network and to

communicate with other 984 controllers,
host computers, and special bridge and

multiplexer devices. A network may
comprise one or more communication
sections—one section may support up
to 32 nodes. Up to 64 nodes may exist
on a network.

< 32Nodes/ >
Section Max.

End RR85 RR85
Node Repeater Repeater

RR85 End
Repeater Node

‘4— 6000 ft (1800 m), 64 Nodes per Network Max. 44

Multiple Modbus Plus networks may be
interconnected using a BP85 Bridge
Plus device.

Network A (Up to 64 Nodes)

é Node 5 Node 6 Node 8 %
Node Node Node
Node 7
BP85
Network B (Up to 64 Nodes) Node 5
Fg Node 3 Node 4 Node 6 J‘\
Node Node Node
o - Terminating Connector
B - nline Connector

Each node within a network must have
a unique address number in the range 1
... 64. The node address of a 984
chassis mount controller is specified us-
ing a set of DIP switches provided on
the top front of the 984-145 module.

12 Modbus Plus

Modbus Plus uses a proprietary proto-
col that delivers high performance inter-
communication capabilities at a data
transfer rate of 1 Mbit/s. The network
medium is twisted-pair shielded cable,
laid out in a sequential multidrop path
directly between successive nodes.
Taps and splitters are not used.

Modbus Plus Token
Rotation

Each node on a Modbus Plus network
functions as a peer on a logical ring,
gaining access to the network upon re-
ceipt of a token frame. The token is a
bit grouping that is passed in a rotating
address sequence from one node to the
next. While an individual node holds
the token, it may initiate data read/write
and statistical transactions with other
nodes; when the node passes its token,
it may write to a global database that is
maintained by all nodes on the network.
Use of this global database allows rapid

GM-A120-LDR

PRE

updating of alarms, setpoints, and other
data.

How the 984-145 Initiates
Modbus Plus Transactions

A 984-145 (or any programmable con-
troller with Modbus Plus capability) may
initiate network communication using a
ladder logic function called MSTR.
MSTR allows you to specify the type of
communications transaction you want to
carry out and to define the routing path
over which you wish the transaction to
take place.

The MSTR block is part of the standard
984-145 instruction set, contained in the
system executive.

Note In order to thoroughly un-
derstand Modbus Plus theory of
operations, to be able to plan the
layout of the total network, and to
meet all the requirements of the
network cable installation, refer to
Modicon Modbus Plus Network
Planning and Installation Guide
(GM-MBPL-001).

For a full description of the MSTR func-
tion block, see Chapter 8 of this book.

GM-A120-LDR

Modbus Plus

13

Modbus Plus Node Addressing

Each node on a Modbus Plus network on the addressing DIP switch on the top
must be assigned a unique address in front of the 984-145 bezel.
the range 1 ... 64 using switches 1 ... 6

Switches Shown in OFF Position

R = OFF
L=ON

=N Wh OO N 0

mem prot

default

mem
O ready
© run

© bat low
© Modbus
© MB Plus

Location of the Modbus Plus Addressing Switches

14 Modbus Plus GM-A120-LDR

PRE

Modbus Plus Node Address Settings for the 984-145 Controller

Switch Position

2

1

Address

N [O B B [[[Y[Y Y [[[[[[[|
rcocoocrcrcoccoccccr e 000414 d 441414141
rcocooccrccc 101 0 COC 11111111
[i o o N Y P [I oy o o Y PR I o o oy o Y YN Y I o i o o oy s [[O |
[o s N I o o Y o oy Y Y o o PN o O Y Iy o [N [o o s [N o s 0 s |

[U o o o o [o o o o o Y I o 1 o o Y N o Y [o o [o o I o s 0 s I 0 |

Switch Position

2 3 4 5

7 8

6

1

Address

rCrrrrrCCCCCCCCCCCCOCOCOCOCOCOCCOCOCOCOCCDQ
rcrocoocrcrccccrcCcCCC 0414414111
rcococcrecrc . g JJJJ 1 CCOCOCC g d 1011
rcocc g 0 JCCOCC 0 A g1
[s g T I o o o Y I oy o Y o o Y PN o o o o U I iy N Y I o o o [[o iy [|

[s o o o o [o o o o o Y I o I o o Y N I Y [o o [o o I o s o s I 0 |

AN NIFTOOOMNODOOT~TANMOMOTOONOOOO
v+«

15

Modbus Plus

GM-A120-LDR

Bridge Mode Between Modbus and

Modbus Plus

The standard Modbus port on the
984-145 Controller can be used in ei-
ther of two ways: as a slave port to a
Modbus master device or as a bridge
between a Modbus master device and
the Modbus Plus network nodes. Make
this selection by setting the comm pa-
rameter slide switch (the bottom slide
switch) on the 984-145 Controller.

The Standard Modbus
Setting

If you want the standard Modbus mode,
set the switch to the mem () position.
You must set the desired Modbus port
parameters in software—using the con-
figurator editor.

The Modbus Plus Bridge
Mode Setting

Bridge mode allows you to access
nodes on a Modbus Plus network from
a Modbus master device (connected to
the standard Modbus port). To set the
Modbus Plus bridge mode, set the slide
switch to default position—the control-
ler’s bridge mode is automatically en-
abled.

The Modbus port parameters are set to
9600 baud, RTU mode (8 data bits and
1 stop bit), and EVEN parity, the same

16 Modbus Plus

default conditions as the -120 and -130
Controllers. Unique to the 984-145,
however, is the default port address.
Instead of defaulting to Modbus port ad-
dress 1, it defaults to the Modbus Plus
port address set by the DIP switch at
the top of the 984-145 Controller.

When a Modbus master device is con-
nected to the Modbus port while the
984-145 is in bridge mode, the master
device can be attached to the local con-
troller or to any other node on Modbus
Plus. When you attach to the local con-
troller, messages from the Modbus mas-
ter are sent directly to the local 984-145
without being routed over a Modbus
Plus communication path. When you
attach to any other node on the net-
work, the message is routed through
the Modbus Plus port to the destination
device.

When you are connecting a Modbus
master device to a node on Modbus
Plus, always use the desired node’s
Modbus Plus address. If you are at-
taching to the local 984-145 in bridge
mode, the master automatically at-
taches to the Modbus Plus node ad-
dress set by the DIP switches on the lo-
cal controller; however, if you want to
attach to any other Modbus Plus node,
the Modbus master device must specify
that node by Modbus Plus address.

GM-A120-LDR

PRE

Caution If you are accus-
tomed to using Modbus master
devices (such as programming
panels) with Modicon program-
mable controllers in un-
networked environments, you
may be used to attaching to
the local controller by address-
ing it as device #1—the default
device address in the configu-
rator editor. Be aware thatin a
Modbus Plus network environ-
ment you must know the Mod-
bus Plus address of the con-
troller (or any other nodal
device) with which you want to
communicate and you must
specify that address correctly
in the attach procedure.

If you want to attach to a node
on Modbus Plus but do not
know its network address, get
this information from your net-
work supervisor before pro-
ceeding.

Note When a Modbus port is
used in bridge mode, it must be
connected to a single Modbus
master device—the bridge can-
not be used as a connection for
a Modbus device network.

Addressing Ranges on
Modbus Plus

A single Modbus Plus network can have

up to 64 addressable nodes, each with
a unique address in the range 1 ... 64).
The Modbus master device connected
to the Modbus port can attach to any
one of these nodes using direct attach
address routing, simply by specifying
the correct address in the range 1 ...
64.

Multiple networks can be joined via
BP85 Bridge Plus devices, and nodes
across multiple networks can be ad-

GM-A120-LDR

dressed. In cases such as this, you will
require an addressing capability outside
the 1 ... 64 range. Two address routing
strategies—explicit and implicit attach
address routing—are available in Mod-
bus Plus. These routing techniques
are described in the following sections.

=

Modbus Plus 17

Modbus Plus Address Routing Schemes

Modbus devices use addresses of one
byte in the range 1 ... 255. Modbus
Plus devices are addressed in the
range 1 ... 64, with five consecutive
routing bytes contained in each mes-
sage. When a Modbus message is re-
ceived at the Modbus port on the
984-145 Controller, the single-byte ad-
dress contained in the message is con-
verted into a five-byte routing path for
Modbus Plus. The five bytes of routing
are imbedded in a Modbus Plus mes-
sage frame as it is sent from the origi-
nating node.

Destination Device
Requirements

The structure of the Modbus Plus rout-
ing address is determined by the type of
device at the destination node:

o If you are initiating a transaction with
another 984 controller, the last
(rightmost) nonzero byte in the rout-
ing scheme is the destination node
address

o If you are initiating a transaction with
a network adapter in a non-controller
node—e.g., an SA85—the next to
the last nonzero byte is the destina-
tion node address, and the last non-
zero byte is the task # (range: 1 ... 8)

o If you are initiating a transaction with
a single slave on a Bridge MUX port,
the next to the last nonzero byte is
the Bridge MUX node address, and

18 Modbus Plus

the last nonzero byte is the desired
MUX port # (range: 1 ... 4)

If you are initiating a transaction with
a slave device on a Modbus network
connected to a Bridge MUX, the sec-
ond from the last nonzero byte is the
node address of the MUX, the next
to the last nonzero byte is the de-
sired MUX port # (range: 1 ... 4), and
the last nonzero byte is the desired
Modbus slave address (range:
1...247)

Any leading nonzero bytes ahead of the
address bytes described above are
Bridge Plus node addresses.

Assume, for example, that your routing
path is to a controller two networks re-
moved from the originating 984. The
message is routed first to a BP85
Bridge Plus at node address 25. The
bridge forwards the message to node
20, a BP85 Bridge Plus device on the
second network. Node 20 forwards the
message to the destination controller
node address 12 on the third network.
The zero-content bytes in the fourth and
fifth routing bytes specify that no further
routing is required beyond the third

byte:

=" Note The routing address
scheme must be developed as
part of an overall network plan-
ning process—for details, see
Modbus Plus Network
Planning and Installation
Guide (GM-MBPL-001).

GM-A120-LDR

PRE

Modbus Plus Message Frame —‘
Routing _

‘7 Bytes

Start End

25/ 20112 0| O

Routing Address 1 J
Routing Address 2 —
Routing Address 3 ——
Routing Address 4 —
Routing Address 5

A Message Frame Routing Path

GM-A120-LDR Modbus Plus

19

Direct, Explicit, and Implicit Attaches

The manner in which Modbus Plus con-
verts a Modbus message using bridge
mode is determined by the range of the
Modbus address (1 ... 255):

255
Implicit Attach
Address
80
9 Explicit Attach
Address
70
69 Reserved
65
64
Direct Attach
Address
1
0 Reserved

Modbus-to-Modbus Plus Address
Conversion

If the address range in the Modbus
message is between 1 ... 64, the mes-
sage is routed to the corresponding
Modbus Plus node address on the local
network. This routing procedure is
called direct attach address. Direct at-
tach address routing implies that a non-
zero value exists in only routing address
1 in the Modbus Plus message frame; it
does not allow you to send the incom-
ing Modbus message beyond the local
network.

If the address range in the Modbus
message is between 70 ... 79, the con-
troller initiates an explicit attach address
procedure which compares the Modbus
address to an address table stored in
the controller. Up to 10 addresses in
the range 70 ... 79 become pointers to
the table, which contains up to 10
stored routing paths for Modbus Plus.

20 Modbus Plus

(This table starts with the register that
immediately follows the register se-
lected for the free-running timer in the
controller.)

Each routing path is five bytes in length.
The routing path pointed to by each ad-
dress is applied to the corresponding
message.

Explicit attach address routing implies
that nonzero values may exist in any or
all routing addresses in the Modbus
Plus message frame; it allows you to
send incoming Modbus messages
through as many as four BP85 Bridge
Plus devices across as many as five
Modbus Plus networks.

If the address range in the Modbus
message is between 80 ... 255, the con-
troller initiates an implicit attach address
procedure which divides the address by
10 and uses the quotient and remainder
as the first and second bytes, respec-
tively, in a routing path. Implicit attach
address routing implies that there may
be nonzero values in routing addresses
1 and 2 in the Modbus Plus message
frame; it allows you to send incoming
Modbus messages through one BP85
Bridge Plus device across up to two
Modbus Plus networks.

GM-A120-LDR

PRE

Modbus Plus Communication Paths

With multiple devices processing mes-
sages asynchronously on a Modbus
Plus network, it becomes possible for
an individual device to have several
concurrent transactions in process. The
984-145 Controller opens a communica-
tion path when a transaction begins,
keeps it open during the transaction,
and closes it when the transaction ter-
minates. When the path is closed, it
becomes available for another
transaction.

Four Types of Communica-
tion Paths

A 984-145 Controller maintains four
types of communication paths

0 Data master paths—For read and
write data or get and clear remote
statistics operations originated by a
MSTR block in the 984-145
Controller going to a destination de-
vice on the network. A 984-145 sup-
ports up to five data master paths—
paths DMO1 ... DM04 for processing
up to four concurrent MSTR blocks,
and path DMO5 that may be used
for data master transactions via the
Modbus port. Design your applica-
tion to use a maximum of four MSTR
data master paths at any one time.

0 Data slave paths—For data reads
and writes received over the network.
The 984-145 supports up to four data
slave (DS) paths handling up to four
concurrent network transactions.

GM-A120-LDR

O Program master paths—For sending

programming commands from the lo-
cal controller to the Modbus Plus net-
work. Program master paths can
handle all Modbus commands—i.e.,
function codes. When a Modbus
master is connected to the Modbus
port on the 984-145, it may be used
for either programming or monitoring
functions. A 984-145 supports one
program master (PM) path.

Program slave paths—For accepting
programming commands received
over the network. A 984-145 sup-
ports one program slave (PS) path.

Both the originating and destination de-
vices open paths and maintain them un-
til the transaction completes. If the
transaction passes through one or more
Bridge Plus devices to access a desti-
nation across multiple networks, each
bridge opens and maintains a path at
each of its two network ports. Thus a
logical path is maintained between the
originating and destination devices until
the transaction is finished.

All paths are independent of one anoth-
er, and activity on one path does not af-
fect the performance of the other paths.

Modbus Plus 21

Chapter 3
Essentials of Ladder Logic
Programming

]

Segments and Networks

]

Standard Ladder Logic Elements

]

Application Example: A Motor Start/Stop Circuit

]

Standard PLC Instructions

]

Instructions Available on Select Compact Models

GM-A120-LDR Ladder Logic Programming 23

Segments and Networks

Ladder Logic Segments

All the ladder logic required to control
your application is stored in a logic seg-
ment in user memory. If you are calling
subroutines as part of your application,
the subroutine logic must be placed in a
separate segment.

The Compact Controllers allow you to
configure up to 32 logic segments. The
last segment is where all subroutine
logic is stored. Subroutines logic is
scanned only when it is called, either
from the ladder logic or from an external
event that triggers an interrupt.

Ladder Logic Networks

Each segment is composed of a group
of contiguous networks. Each network
is a small, clearly defined ladder dia-
gram bounded on the left by a power

rail and on the right by a rail that, by
convention, is not displayed. The lad-
der is seven rungs high by eleven col-
umns wide.

The intersection of each rung and col-
umn in the network is called a node—
each network contains 77 nodes.

The number of networks in a segment
is limited by the amount of user pro-
gram memory available in the CPU and
by the time it takes for the CPU to scan
the ladder logic program.

Placing Relay Logic and
Instructions in a Network

Each time you use an relay logic
element—e.g., a contact, a coil, a hori-
zontal short—in ladder logic, the ele-
ment consumes one node in the logic
network.

Power
Rail 1 2 3 4 5

Ladder Logic Network Structure

NOTE Only coils can
be shown in column 11

24 Ladder Logic Programming

GM-A120-LDR

PRE

An instruction in ladder logic may con-
sume one, two, or three nodes in a net-
work, depending on the instruction type.
A counter instruction, for example, is a
two-high nodal instruction—it consumes
two contiguous nodes that must be one
over the other. An ADD instruction, on
the other hand, is a three-high nodal in-
struction consuming three contiguous
nodes stacked over each other.

How Ladder Logic Is Solved

A Compact Controller scans the ladder
logic program sequentially in the follow-
ing order:

O Segment by segment
o Network 1 through network n se-
quentially within each segment

o Node by node within each network,
starting in the upper left node of the
ladder and moving top to bottom,
then left to right

Network 1

/

Next Network

Power Flow in and between Ladder Logic Networks

GM-A120-LDR

Ladder Logic Programming

25

Relay Logic Elements

There are three general types of relay
logic elements used in ladder logic pro-
gramming—contacts, coils, and shorts.

Relay Contacts

Contacts are used to pass or inhibit
power flow in a ladder logic program.
Four kinds of contacts may be used:

O The normally open (N.O.) contact,
which passes power when its refer-
enced coil or input is ON:

ON
N.O. Contact
OFF OFF
ON

Power Flow
OFF OFF

0 The normally closed (N.C.) contact,
which passes power when its refer-
enced coil or input is OFF:

ON

N.C. Contact

OFF OFF
Power Flow

ON ON

OFF

O The positive transitional contact,
which passes power for only one

Each relay logic element consumes one
node in a ladder network.

scan as the contact or coil transitions
from OFF to ON:

Positive
Transitional ON
Contact
OFF
ON
Power Flow
OFF OFF
One
I" Scan "'

O The negative transitional contact,
which passes power for only one
scan as the contact or coil transitions
from ON to OFF:

ON
Negative
Transitional OFF
Contact
ON
Power Flow
OFF OFF
One
Scan

The symbols used in ladder logic to rep-
resent contact types are shown in the
table below.

Element Symbol Function Memory Utilization
Passes power when Can be referenced to a logic coil
N.O. Contact ﬁ # its referenced coil or in a Ox register or to a discrete
input is ON input in a 1x register
Passes power when Can be referenced to a logic coil
N.C. Contact % its referenced coil or in a Ox register or to a discrete
input is OFF input in a 1x register
- Passes power for one C ic coi
Positive an be referenced to a logic coil
Transitional 4 ? F Sc?l": as t_r:_e CO’f“aCt or in a Ox register or to a discrete
coll transitions from input in a 1x register
Contact OFF to ON P 9
. Passes power for one Can be ref ic coi
Negative L an be referenced to a logic coil
Trar%sitional {¢ ‘ sc_al\r: as t_r:_e corfnact or in a Ox register or to a discrete
Coll transitions from input in a 1x register
Contact ON to OFF P ¢

26 Ladder Logic Programming

GM-A120-LDR

PRE

Normal and Memory-retentive Coils

Element Symbol Function

Memory Utilization

Turns OFF when
power is removed

-()r

A discrete output value represented by a
0x reference number; may be used
internally in the logic program or
externally to a discrete output

Memory-
retentive
Caoil

(-

one scan

Coil comes back in
the same state when
power is restored for

A discrete output value represented by a
0x reference number; may be used
internally in the logic program or
externally to a discrete output

A coil is a discrete output value repre-
sented by a Ox reference bit. Because
output values are updated in state RAM
by the CPU, a coil may be used inter-
nally in the logic program or externally
via the 1/0 map to a discrete output unit
in the control system.

A coil is either ON or OFF, depending
on power flow. When a coil is ON, it ei-
ther passes power to a discrete output
circuit or changes the state of the asso-
ciated internal relay contact in state
RAM.

There are two types of coils—normal
coils and memory-retentive coils. When
power is applied or restored to a normal
coil, any value previously held by the
coil is cleared prior to the first logic
scan of the PLC. With a memory-reten-
tive coil, the value previously held by
the coil is retained for one scan, then
the logic takes control.

Displaying Coils in a Network

A ladder network can contain a maxi-
mum of seven coils. No logic elements
except coils are allowed in the eleventh
column. If a coil appears on a rung in a
column other than 11, no other logic
element can be placed to the right of
the coil on that rung.

Vertical and Horizontal Shorts

Shorts are simply straight-line connec-
tions between instruction blocks and/or
contacts in a ladder logic network.

GM-A120-LDR

A vertical short connects contacts or in-
struction blocks one above the other in
a network column. Vertical shorts can
also be used to connect inputs or out-
puts to create either/or conditions such
as the one illustrated on the following
page. When two contacts are con-
nected by a vertical short, power is
passed when one or both contact(s) re-
ceive power. A vertical short does not
consume any user memory.

Horizontal shorts are used to expand a
rung in a ladder logic network without
breaking the power flow. Each horizon-
tal short used in a program consumes
one word of user logic memory.

On the following page are two examples
of how horizontal and vertical shorts
can be used together with relay con-
tacts to create ladder logic.

The first example is a simple either/or
condition—the top rung of ladder con-
tains two N.O. contacts (10001 and
10002), and the lower rung contains a
single contact (10003) followed by a
horizontal short. A vertical short con-
nects the two rungs after the second
column. Power can pass through the
network to energize coil 00001 when
either contacts 10001 and 10002 are
energized or when contact 10003 is
energized.

Ladder Logic Programming 27

The second example shows an Exclu-
sive-OR circuit built with similar contacts
and shorts. This circuit can be used to
prevent coil 00001 from energizing
when two conditions, represented by
contact 10001 and contact 10002, are
activated simultaneously.

In both examples, the vertical shorts,
which do not consume any user pro-
gram memory, are treated as part of the
node in which contact 10002 is
programmed.

28 Ladder Logic Programming

— — 0

10001 10002 00001

el —

10003

Example 1: Either/Or Relay Logic

— /1

10001 10002 00001
10001 10002

Example 2: Exclusive-OR Relay Logic

GM-A120-LDR

PRE

Application Example:

A Motor Start/Stop Circuit

MOTOR
START PB MOTOR MOTOR START
L1 STOP PB oL1 RELAY L2
—O O J/% R1
MOTOR START
AUXILIARY CONTACT N o
C1 /A\
—)
START 7/ N
MOTOR PUMP
02‘ MOTOR oLt
‘ M1 @@07

Above is an example of a standard
across-the-line electrical diagram for a
pushbutton-activated motor start/stop
circuit.

Pushing the motor start pb energizes
motor control relay R1 and closes con-
tact C2 to start motor M1. The auxiliary
contacts on motor control relay C1 also
close, allowing the motor start/stop cir-
cuit to be latched ON. Two things can
cause relay R1 to drop out:

0 An overload (OL1) on motor M1
0 The motor stop pb is pushed
Now let’s look at an implementation of

the same circuit using contacts, coils,
and shorts in a ladder logic network.

We see in the illustration below that the
sequence of operation remains essen-
tially the same when the motor start/
stop circuit is designed for the control-
ler. The big difference is that all the I/O
points are wired directly to input/output
modules contained in the programmable
control system, and the actual control is
programmed in ladder logic.

The ladder logic implementation allows
greater flexibility of control and de-
creased development time, since all the
hard-wiring between points of control is
done electronically.

START

4

10004

4
10002

O O |
STOP 100ﬂ
olo— \
c1 10003

H h

“cuoz—

00001

00002

“cwuHco

44

Field Inputs

Ladder Logic

Field Outputs

GM-A120-LDR

Ladder Logic Programming

29

Chapter 4
Counters
and Timers

o Counter Instructions
o Timer Instructions

o Application Example: Logic for a Real-time Clock

GM-A120-LDR Counters and Timers 31

Counter Instructions

Two counter instructions are provided.
The up-counter (UCTR) counts up from
0 to a preset value, and the down-

counter (DCTR) counts down from a
preset value to 0. Both are two-high
nodal instructions.

Instruction| Structure Inpzlt)lts Nodes Outputs Function
(©)
Top: Top: Top:
- 3, 4,)((, ofl o| ONinitiates counter preset count = preset
Up-counter K counter Counts up from 0 to
a preset value
UCTR Bottom: Bottom:
I3 ax | O] 0=reset accumulated Bottom:
1 = enabled count count < preset
Top: Top: Top:
| |3 4x,0or| 4| ONinitiates counter preset count =0
Down-counter K* counter Counts down from a
preset value to 0
DCTR Bottom: Bottom:
I3 ax | O] 0=reset accumulated Bottom:
1 = enabled count count > preset
*K is an integer constant in the range 1 ... 999.

A Simple Up-counter Example

When contact 10027 is energized, the
top input to UCTR receives power;
since contact 00077 also passes power,
the instruction is enabled. Each time
contact 10027 transitions from OFF to
ON, the accumulated count increments
by 1. When the value reaches 100,
the top output passes power—coil
00077 is energized, and coil 00055 is
de-energized. Contact 00077 opens
when coil 00077 is energized, and the
accumulated count is reset to 0 on the
next scan. On the next scan, coil
00077 is de-energized; contact 00077
closes and the UCTR is enabled.

4{ }7 100
10027 00077
)F UCTR ()
40007
00077 00055

32 Counters and Timers

GM-A120-LDR

PRE

Timer Instructions

The three timer instructions can be

an application. They are two-high nodal

used to time events or create delays in instructions.
Instruction| Structure Inpzlt)lts Nodes Outputs Function
(0)
Top: Top: Top:
| I8 é4xor | o ON when bot- timer preset time = preset Timer increments
One-second K* tom input = 1 at intervals of one
timer second
| | M0 L 4| Bottom: Bottom:
4x 0 = reset accumulated Bottom:
1 = enabled time time < preset
Top: Top: Top:
| |3 4xor | 1 ONwhenbot- | timer preset time = preset
k. .
Tenth-é)ft-la K tom input = 1 Timer increments
second timer at intervals of 0.1 s
| | To1 L 4| Bottom: Bottom:
4x 0 = reset accumulated Bottom:
1 = enabled time time < preset
Top: Top: Top:
1 3x, 4x, or | o ON when bot- timer preset time = preset X .
Hundredth-of K* tom input = 1 Timer increments
a-second timer at intervals of 0.01 s
| | TO1 L 4| Bottom: Bottom:
4x 0 = reset accumulated Bottom:
1 = enabled time time < preset

*K is an integer constant in the range 1 ... 999.

A One-second Timer Example

When contact 10002 is closed—i.e., the
timer is enabled—the value contained in
register 40040 is 0. Coil 00108 is ON
and 00107 is OFF. When contact
10001 is closed, the count accumulates
in register 40040 at one-second inter-
vals until 5 is reached; coil 00107 goes
ON and 00108 goes OFF. When con-
tact 10002 is opened, the value in regis-
ter 40040 is reset to 0, coil 00107 goes
OFF, and 00108 goes ON.

1 5
10001 00107
¥ T1.0 @
‘ 40040
10002 00108

GM-A120-LDR

Counters and Timers 33

Application Example: Logic for a

Real-time Clock

0060 @

00001

T1.0
40053

7‘ } 0060
00001 00002

UCTR
7M7 40052

— — = —0

00002 00003
UCTR
40051

This example shows the ladder logic for
a real-time clock with one-second accu-
racy. The T1.0 instruction is pro-
grammed to pass power at 1 min inter-
vals. When logic solving begins, coil
00001 is OFF, and both the top and bot-
tom inputs of the timer instruction re-
ceive power.

Register 40053 in the bottom node of
the T1.0 instruction starts incrementing
time in seconds. After 60 increments,
the top output passes power to energize
coil 00001 and opens N.C. contact
00001 to reset register 40053 to 0.

34 Counters and Timers

N.C. contact 00001 closes and passes
power to the count input of the first
UCTR. The accumulated count value in
register 40052 increments by 1, indicat-
ing that one minute has passed.

Because the accumulated time count in
T1.0 no longer equals the timer preset,
coil 00001 loses power, N.C. contact
00001 closes, and the timer begins to
re-accumulate time in seconds and con-
tinues to increment the first UCTR.
When the accumulated count in register
40052 of the first UCTR instruction in-
crements to 60, the top output passes
power and energizes coil 00002.

N.C. contact 00002 opens, and the val-
ue in register 40052 resets to 0. N.C.
contact 00002 closes, and the accumu-
lated count in register 40051 of the sec-
ond UCTR instruction increments by 1.
This indicates that an hour has passed.

The time of day can be read in registers
40051 (indicating the hour count),
40052 (indicating the minute count), and
40053 (indicating the second count).

GM-A120-LDR

PRE

Chapter 5
Basic Math
Instructions

0 Integer Math Instructions

0 Application Example: Fahrenheit-to-Centigrade Conversion

GM-A120-LDR Basic Math Instructions 35

Integer Math Instructions

Standard addition, subtraction, multipli- tions. Each of the four instructions is a
cation, and division instructions are pro- three-high nodal instruction.
vided for calculating integer math opera-

Instruction| Structure '"rzl‘;ts Nodes Outputs Function
(V)
Top: Top: Top: .
- 3x, 4x, 0r | 0| ONenablesa value 1 sum > 9999 Adds the values in the
K* (val 1) + (val 2) top and middle nodes,
operation then stores the result
. in a 4x register in the
Integer 3x, 4x, or Middle: bottom node
Addition K* value 2
ADD
Bottom:
4x sum
3% 4x. o Top: Top: Top: Subtracts the middle
|] K*Y - 0| ONenablesa value 1 val 1> val 2 node value from the
(val 1) - (val 2) top node value and
Absolute (no operation stores the difference
signs in the 3x, 4x, or e iddle: in a 4x register in the
values) Integer 'k« O c/gﬁjleleé c/gldgli‘val 5 bottom node
Subtraction
SuB -0 Bottom: Bottom:
4x difference val 1 <val 2
Top: Top: Top:
| 3x,4x,0r | ON enables a value 1 echos the Multiplies the values
| (0]
K* (val 1) x (val 2) top input in the top and middle
operation nodes, then stores the
Integer] product in two contig-
Multiplication 3x, 4x, or Middle: uous 4x registers
K* value 2
Bottom:
muL product (high
4x order digits)
Top: Top: Top:
. 3x, 4x, or | o ON enables a value 1** division -
K* (val 1) / (val 2) successful Divides the top node
Integer operation value by the middie
Division with node value, then
remainder | - 8axorl o1 Middle: Middle: Middle: stores the result in
K 0 = fractional value 2 if result > 9999 | the 4x register in the
remainder avalueof 0is | bottom node and the
1 = decimal returned remainder in register
bv o remainder Bottom: ax+1
4x result
(remainder in Bottom:
reg4x + 1) value2 =0
*K is an integer constant in the range 1 ... 999.
** If value 1 of the DIV instruction is stored 3x or 4x registers, then the register shown in the top node is the first
of two contiguous registers. The high-order half of value 1 is stored in the displayed register (3x or 4x) and
the low-order half of value 1 is stored in the next contiguous register (3x + 1 or 4x + 1).

36 Basic Math Instructions GM-A120-LDR

The MUL and DIV blocks require that
two contiguous registers be used in the
bottom node. The first of the two regis-
ters is seen in the block, and the pres-
ence of the second register is implicit.

In the MUL instruction block, the high-
order portion of the calculated product
is stored in the first bottom-node regis-
ter and the low-order portion of the
product is stored in the second bottom-
node register.

In the DIV instruction block, the quotient
is stored in the first bottom-node regis-
ter and the remainder is stored in the
second bottom-node register. If you do
not use a constant as the top-node val-
ue in a DIV instruction, then it the value
must be placed in two contiguous 3x or
4x registers. The high-order half of the
value is stored in the displayed register,
and the low-order half of the value is
stored in the implied register.

For example, if the top-node value is
105 and it were to be placed in two
contiguous registers, 40025 and 40026,
instead of being given as a constant,
then register 40025 would contain all
zeros and register 40026 would contain
the value 105.

A DIV Example

Here is an example of a DIV operation
where the top-node value, 105, is
divided by the middle-node value, 25.
The quotient (4) is stored in register
40271, and the remainder (5) is stored
in register 40272.

— —

10001

] =

10002

DIV
40271

GM-A120-LDR

When the middle input—contact
10002—is open, the remainder is ex-
pressed as a fraction (0005); when con-
tact 10002 is closed, the remainder is
expressed as a decimal (2000).

Basic Math Instructions 37

Application Example:

Fahrenheit-to-Centigrade Conversion

This example implements the formula
°C = (°F - 32) x 5/g
When the top input to the SUB instruc-
tion block receives power, the value in
the middle node, 32, is subtracted from
the value stored in register 40007,
some number of degrees Fahrenheit.
The difference is placed in register
41201.

The top input to the MUL instruction
block then receives power, regardless of
whether the subtraction result is posi-
tive, negative, or 0. In the case where
the subtraction result is negative, coil
00011 is energized to indicate a nega-
tive value.

The value in the top-node register of the
MUL block—register 41201—is then
multiplied by 5 and the product is
placed in register 41202 and implicit
register 41203.

38 Basic Math Instructions

The top node in the DIV instruction
block is then energized, and the value
in registers 41202 and 41208 is divided
by 9. The quotient, which is the tem-
perature conversion in degrees Centi-
grade, is stored in register 40001 (and

the remainder in implicit register 40002).

— 40007 41201 41202
— 32 5 9
suB MUL DIV

[41201 41202 40001

00011

Note: The vertical short to coil 00011 (indicating a
negative value) must be placed to the left of the vertical
shorts that link the three SUB block output.

GM-A120-LDR

PRE

Chapter 6
Data Management
Instructions

0 Moving Register and Table Data
0 Building a FIFO Stack
0 Searching a Table

0 Moving a Block of Data

GM-A120-LDR Data Management Instructions 39 Dat

Moving Register and Table Data

Three standard instruction blocks are
provided for moving the data stored in
registers and in tables of registers:

O A register-to-table (R—T) DX move
O A table-to-register (T—=R) DX move

O A table-to-table (T—T) DX move

A Compact Controller can accommo-
date the transfer of one register per

scan for each instruction in a ladder

logic program.

Each is a three-high nodal instruction.

Instruction| Structure Inpzlt)lts Nodes Outputs Function
©)
Top: Top: Top:
ox, 1x, * ON moves data | source register echgs the Copies a 16-bit pat-
1 3x,0rdx [anq increments top input tern in a source regis-
Register-to- pointer ter to a register in the
table move Middle: Middle: Middle: destination table; the
1 4x ON freezes the | pointer to the pointer = table de§t|natlon register is
pointer target register length p0|rl1ted t.o by thg ax
(4x + 1) in the register in the middle
| R—T destination table node
i Bottom:
ON resets the Bottom:
pointer to 0 Table length*
Top: Top: Top:
ON moves data | source table echos the . .
| Oxx ¢ and increments top input Copies the bit pattern
3x, or 4x pointer of a register in the
Table-to-register source table to a
move .) . destination register
| Middle: Middle: Middle: (register 4x + 1 in the
ax ON freezes the pom?er tlo the pointer = table middle node)
pointer destination length
register (4x + 1)
| TR
i Bottom:
ON resets the Bottom:
pointer to 0 Table length*
Top: Top: Top: . .
ox. 1x. * ON moves data | source table echos the Copies the bit pattern
— 3x. or 4x and increments top input of aregister in the
> pointer source tableto a
register in the same
Table-to-table Middle: Middle: Middle: position in a destina-
move - 4x ON freezes the | pointer to the pointer = table tion table; the
pointer target register length destination register is
(4x + 1) in the pointed to by the 4x
| TT destination table register in the middle
Kok Bottom: node
ON resets the Bottom:
pointer to 0 Table length*

* |If you use a Ox or 1x reference, it must be given as a multiple of 16 + 1 (1, 17, 33, etc.), and it implies
the use of 16 discrete bits (1... 16, 17 ... 32, 33 ... 48, etc.).

** K is an integer constant in the range 1 ... 255.

40 Data Management Instructions

GM-A120-LDR

PRE

4{ }7 30001

4{}7

10002
i

10003

40340 —
00135

The ladder logic example shown above
moves the value stored in register
30001 into a destination table of five
holding registers, 40341 ... 40345. One
30001 register value is moved into one
of the table registers in every scan.

The pointer to the destination table—re-
gister 40340—is specified in the middle
node of the register-to-table instruction
block, and the number of holding regis-
ters in the table, 5, is specified in the
bottom node.

When contact 10001 transitions ON for
the first time, the current contents of
register 30001 are copied to register
40341, the first of five contiguous regis-
ters in the destination table. The first
table in the destination register is al-
ways the next contiguous register after
the pointer reference number given in
the middle node of the instruction block.
When this DX move takes place, the
value in the pointer register increments
from 0 to 1.

In the next scan of contact 10001, the
contents of register 30001 are copied
into register 40432, the second register
in the destination table; the value in the
pointer register increments from 1 to 2.

This process continues until the con-
tents of register 30001 are copied into
register 40345 in the table and the
pointer value has incremented to 5. At
this point, the middle output from the
block passes power and energizes coil
00135.

GM-A120-LDR

No further register-to-table moves are

possible while the value of the pointer
equals the table length specified in the
bottom node of the block.

Pointer

Source Destination

Register Table
30001 1st transition 20341
2nd transition

40342

_3rd transition g, 40343
4th transition 40344

5th transition

40345

If, after the second transition of contact
10001, contact 10002 were to become
energized, the pointer value would be
frozen-i.e., it could not be incremented
or decremented—and subsequent tran-
sitions of contact 10001 would cause
the current value in register 30001 to be
copied to register 40343.

If contact 10003 is energized, the value
of the pointer is reset to 0.

Data Management Instructions 41

Dai

Building a FIFO Stack

Instruction| Structure '"rzl‘;ts Nodes Outputs Function
Top: Top: Top.(o)
ox. 1x. * ON inserts a bit | The source echos the .)
I — ax orax | O | pattern in the register in the top input Copies a 16-bit pat-
’ top of the stack | stack tern into a register at
First-in to . . the top of a stack; the
a queue stack Middle: Middle: table begins at regis-
4 — O pointer to the stack is full ter 4x + 1 of the
register in the middle node
stack where the
source bits will
':: O be inserted Bottom:
Bottom: stack is
stack length* empty
Top: Top: Top:
ON removes pointer to the echos the Moves the bit pattern
I = 4x — O the bit pattern source register top input in the bottom register
First-out of from the bottom | in the stack of the stack to a des-
a ll:zseuoeust(;ck ofthe stack Middle: Middle: :ir:‘:‘sifancrkegis‘er out of
oxorax — O destination registey Stack is full
where source bits
will be moved
FOUT | o BO"Om,’
K Bottom: stack is
stack length* empty
* If you use a Ox or 1x reference, it must be given as a multiple of 16 + 1 (1, 17, 33, etc.), and it implies
the use of 16 discrete bits (1 ... 16, 17 ... 32, 33 ... 48, etc.).
** Kis an integer constant in the range 1 ... 255.

The two instructions above let you
queue data into a first-in/first-out stack.
The FIN instruction copies the bit pat-
tern of a register or of 16 discretes into
a register at the top of a table (or stack)
of holding registers.

42 Data Management Instructions

Source

Stack

[1 =] 1m

Source

Stack

FIN
| 222]—] 222

Source

11

Stack

| 833]—| a3s

222
11

GM-A120-LDR

The FOUT instruction moves the bit pat-
tern down through the stack, then out of
the stack and into a destination table.

Warning FOUT will override
any disabled coils in a desti-
nation table without enabling
them. If a coil has been dis-
abled for repair or mainte-
nance, there is the potential
for injury, since that coil’s
state can change as a result of
the FOUT operation.

When you are running a FIFO stack in
ladder logic, the FOUT instruction
should be executed in each scan before
the FIN instruction so that the oldest
data in the stack can be cleared to the
destination table before the newest data
is queued into the stack. If the FIN
block is executed first, an attempt to en-
ter data into a filled stack is ignored.

Stack

333
202 Destination

M =]

FOUT

Source EIN Stack
‘ 444 ‘—-b 444
333

222

GM-A120-LDR

Data Management Instructions

43 Dai

Searching a Table

The SRCH instruction allows you to
search a table of registers for a specific
bit pattern contained in one of the table

registers. SRCH is a three-high nodal
instruction.

Instruction| Structure '"rzl‘;ts Nodes Outputs Function
W)
Top: Top: Top:
ON initiates a first register in echos the
I — 3xorax — O] search the source table top input Seamhes atable .Of
registers for the bit
Middle: Middle: Middle: pattern specified in
Table search 0 = search from | 4x pointer tothe | match found the register immedi-
' a4 O the beginning| location in the ately following the
1 =search from | table of the regis- pointer in the
last match ter holding the middle node
SRCH value searched
K* for; the next reg-
ister, 4x + 1, con-
tains the value
being searched
for
Bottom:
Table length*
*Kis an integer constant in the range 1 ... 255.

An Example of a SRCH Operation

T

10001
—— —— 40430 —@
10002 00142
SRCH
5

The source table to be searched is five

registers long starting at holding register
40421, and the content of the table reg-
isters is as follows:

Source Table Register
Registers Content
40421 = 1111
40422 = 2222
40423 = 3333
40424 = 4444
40425 = 5555

The bit pattern to be searched for is
3333, which is the value that gets en-
tered into register 40431 (the register

44 Data Management Instructions

immediately following the pointer regis-
ter in the middle node).

When contact 10001 transitions from
OFF to ON, the logic searches the
source table for the register that con-
tains 3333. When that value is found
(in register 40423), the pointer value in
register 40430 is set to 3, indicating that
the third register in the source table
contains the searched-for value; coil
00142 is also energized for one scan.

GM-A120-LDR

PRE

Moving a Block of Data

The block move (BLKM) instruction co-
pies the entire contents of a source
table of registers to a destination table
in one logic scan. BLKM is a three-high
nodal instruction.

Warning BLKM will override
any disabled coils in a desti-

nation table without enabling

them.
abled for repair or mainte-

nance, there is the potential

for injury, since that coil’s

If a coil has been dis-

state can change as a result of

the BLKM operation.

Instruction| Structure Inpzlt)lts Nodes Outputs Function
(©)
. Top: Top: Top: . X
1 Ox, 1%, * | o| ONinitiates a source table echos the Copies the entire
3x, or 4x block move top input contents of one table
to another table of
Block move outputs or holding
Middle: d
O)i:‘(or destination table registers
BLKM Bottom:
Kx Table length*

* |If you use a Ox or 1x reference, it must be given as a multiple of 16 + 1 (1, 17, 33, etc.), and it implies
the use of 16 discrete bits (1... 16, 17 ... 32, 33 ... 48, etc.).

referencing those coil numbers

**If Ox references are used as the destination, they cannot be programmed as coils, only as contacts

*** K is an integer constant in the range 1 ... 100.

Application Example: A Recipe Loading Routine Using Block Moves

Specific recipes can be loaded to and
removed from the generic process via

A ladder logic program can store a col-
lection of specific process recipes, each
in a unique storage table and loadable
on demand to a working table where a
generic process is being run. The
recipes must be structured with similar
types of information in corresponding
registers—if heating temperature infor-
mation is kept in the third register of
one recipe, similar information should
be kept in the third register of all the
other recipes as well.

GM-A120-LDR

BLKM instructions.

The logic example shown on the next
page contains an eight-register working

table (registers 40201 ... 40208) in

which three different recipes can be run.
Recipe selection is handled by three in-
put switches, contacts 10101, 10102,

and 10108.

Data Management Instructions

45 Dai

To run process A, for example, turn
7\ J*J/};J/Tf 40101 contact 10101 ON and leave contacts

10101 10102 10103 10102 and 10103 OFF. When input
B 40201 10101 is energized, it passes power
through N.C. contacts 10102 and
BLKM 10103, and the first BLKM block moves

the recipe for process A from registers
7‘ 40101 ... 40108 to registers 40201 ...
r 40109 40208.

10102 10101 10103

40201

BLKM

7‘ ij/}/ij/rf 40117

10103 10101 10102

40201

BLKM

46 Data Management Instructions GM-A120-LDR

Chapter 7
Data Manipulation
Instructions

0 Boolean Logic Instructions

0 An Application Example: Simple Table Averaging
0 Bit Complementing in a Data Matrix

o Bit Comparison in a Data Matrix

0 Sensing and Manipulating Bits in a Data Matrix

GM-A120-LDR Data Management Instructions

47 Dal

Boolean Logic Instructions

tion matrix without enabling

Three instructions are available to per-
form ANDing, ORing, and XORing logic

operations.

Warning These Boolean in-
structions will override any

disabled coils in the destina-

them.

If a coil has been dis-

abled for repair or mainte-
nance, there is the potential
for injury, since that coil’s

state can change as a result of

the logic operation.

Inputs

Outputs

Instruction Structure 0 Nodes Function
W)
Ox 1x. * Top:) Top:) Top: ANDs the bits in the
— s orax - Initiates a logical | source matrix echos the source matrix with
X, Or 4x AND operation top input the equivalently po-
sitioned bits in the
Boolean 0x* or Middle: destination matrix,
AND ax destination matrix then places the re-
sults in the destina-
tion matrix, over-
AND Bottom: writing the original
Kk matrix length* bit pattern
Ox. 1x. * Top: _ Top: _ Top: ORs the bits in the
I axordx - Igmates alogical | source matrix echos the source matrix with
’ R operation top input the equivalently po-
sitioned bits in the
Bgcgean Ox™* or Middle:) destination matrix,
ax destination matrix then places the re-
sults in the destina-
tion matrix, over-
OR Bottom: writing the original
Kok matrix length* bit pattern
. Top: Top: Top:
o o) Initiates a logical | source matrix echos the XORs the bits in the
3, or 4x XOR operation top input source matrix with
the equivalently po-
Boolean Middle: sitioned bits in the
exclusive OR Ox* or destination matrix destination matrix,
ax then places the re-
sults in the destina-
XOR Bottom: tion matrix, over-
Kok matrix length* writing the original
bit pattern

* |If you use a Ox or 1x reference, it must be given as a multiple of 16 + 1 (1, 17, 33, etc.), and it implies
the use of 16 discrete bits (1... 16, 17 ... 32, 33 ... 48, etc.).

** |f Ox references are used as the destination, they cannot be programmed as coils, only as contacts
referencing those coil numbers

*** K is an integer constant in the range 1 ... 100

48 Data Manipulation Instructions

GM-A120-LDR

PRE

An ANDing Operation

Source Matrix Bits 4 0 ‘

An AND instruction logically ANDs each Source Matrix
bit in a source matrix with the corre- 40600] 1111111100000000
sponding bits in a destination matrix, 40601| 1111111100000000
then posts the results in the destination
matrix—overwriting the previous bit pat- Original Destination Matrix
tern in the destination matrix. 40604 1111111111111111
For example, when contact 10001 40605| 0000000000000000
passes power in the network below, the
bit matrix comprising registers 40600 ANDed Destination Matrix
and 40601 are ANDed with the bit ma- 406041 1111111100000000
trix comprising registers 40604 and 406051 0000000000000000
40605.
4{ }7 OR
10001 40600 Likewise, an OR instruction logically
ORs the bits in a source matrix with the
40604 corresponding bits in a destination ma-
trix, then overwrites the destination ma-
A2N° trix with the results of the operation.

=" Note Outputs and coils cannot
be turned OFF with the OR in-
struction.

The result is then copied into registers
40604 and 40605, overwriting the pre-
vious bit pattern.

An ORing Operation

Source Matrix Bits 4 0 ‘

Destination Matrix Bits ﬂ 0 OJ

GM-A120-LDR Data Management Instructions 49 Dat

For example, if we were to OR the
same two matrixes as in the example
shown above:

4{ }7 40600

10001

40604

the result would be:

Source Matrix

40600 1111111100000000

40601 1111111100000000

Original Destination Matrix
40604 | 1111111111111111
40605 000000000000000O0

ORed Destination Matrix
40604 | 1111111111111111
40605 1111111100000000

XOR

The exclusive OR instruction logically
XORs the bits in a source matrix with

the corresponding bits in a destination
matrix, then overwrites the destination

matrix with the results of the operation.

For example, if we were to XOR the
same two matrixes as in the example
shown above:

4{ }7 40600

10001

40604

XOR

the result would be:

Source Matrix
40600 1111111100000000
40601 1111111100000000

Original Destination Matrix
40604 | 1111111111111111
40605 0000000000000000

XORed Destination Matrix
40604 | 0000000011111111
40605 1111111100000000

An XORing Operation

Source Matrix Bits 4 0 ‘ *‘ ! ‘ *‘ ! ‘ *‘ 0 ‘
> > > >
> > > >

Destination Matrix Bits ﬂ 0/ 0 7‘ 0 /1 ,‘ 1/0 ,‘ 1/ 1

Archiving the Original Destination Matrix Values

If you want to save the original bit pat-
tern from the registers in the destination
matrix, use the BLKM instruction to
copy the information into another table
before running the Boolean logic opera-
tion.

50 Data Manipulation Instructions

GM-A120-LDR

PRE

An Application Example: Simple Table

Averaging

-

10006

40101 40202

40203 40204

T—R
84

ADD
40202

40201

ADD
40201

40201

40203

DIV
40301

40201

40201

XOR
3

00003

Here is an application routine that com-
bines three integer math calculations
with a data transfer and an XOR in-
struction. It calculates the average val-
ue of the 84 values stored in the table
of registers 40101 ... 40184.

When contact 10006 closes, the top
node in the table-to-register instruction
receives power, initiating the data trans-
fer. The value in the first register of the
table is copied into the middle node of
the first ADD instruction, and the table
pointer value increments register 40203
in the middle node of both the table-to-
register instruction and the DIV instruc-
tion. Because the top output from the
table-to-register instruction passes
power, the first ADD block receives
power and adds the value in register
40204 to the value in register 40202
(which is initially 0); then the sum of this
addition overwrites the previous value in
register 40202.

The routine continues to run this way
until all the values in the table of 84
registers have been added together. At
this point, the pointer value in the
middle node of the table-to-register in-
struction is 84, and the middle output

GM-A120-LDR

from that instruction passes power and
enables the DIV instruction.

The values in registers 40201 (all Os,
representing the high-order portion of
the sum of all the register values in the
table) and 40202 (the low-order portion
of the sum) are divided by 84. The re-
sult is placed in register 40301, and the
remainder is placed in register 40302.
(Because there is power to the middle
input of the DIV instruction, the remain-
der is expressed as a decimal.) The re-
sult of the DIV operation is the average
value of the current values stored in all
84 registers in the table.

When the top output from the DIV in-
struction passes power, the XOR in-
struction becomes empowered. It ex-
clusively ORs the values in registers
40201 ... 40203 with themselves, clear-
ing the matrix to Os and indicating that
the current table averaging operation is
complete and that a new one should
start.

Data Management Instructions

51 Dal

Bit Complementing in a Data Matrix

The COMP instruction complements the
bit pattern in a matrix—i.e., changes all
the Os to 1s and all the 1s to Os—then
copies the result in a second matrix. A
matrix can be complemented in one
scan.

COMP is a three-high nodal instruction.

Warning COMP will override
any disabled coils in a desti-
nation matrix without enabling
them. If a coil has been dis-
abled for repair or main-
tenance, there is the potential
for injury, since that coil’s
state can change as a result of

the COMP operation.

Instruction| Structure '"’zl‘;ts Nodes Outputs Function
(©)
Top: Top: Top:
1 - 30X’ 1)‘"}* L. 0| ONinitiates the | source matrix echos the g?mpilemgnt;the
! X, OF 4x bit complement top input it values in the
Bit operation source matrix and
complement Middle: places the results
Ox** or destinati) in the destination
4x estination matrix matrix
COMP Bottom:
Kx matrix length*

* |If you use a Ox or 1x reference, it must be given as a multiple of 16 + 1 (1, 17, 33, etc.), and it implies
the use of 16 discrete bits (1 ... 16, 17 ... 32, 33 ... 48, etc.).

referencing those coil numbers

** |f Ox references are used as the destination, they cannot be programmed as coils, only as contacts

*** K is an integer constant in the range 1 ... 100

A Bit Complement Example

The ladder logic below shows a COMP
block with a source matrix composed of
two registers—40250 and 40251—and
a destination matrix composed of regis-
ters 40252 and 40253.

4{ }7 40250

10001

40252

COMP

When contact 10001 passes power the
block complements the bit values in the

52 Data Manipulation Instructions

source register and places the results in
the destination register.

Source Matrix

40250 1111111100000000
40251 1111111100000000

Complemented Destination Matrix
40252 | 0000000011111111
40253 | 0000000011111111

All values stored in the destination reg-
ister before the COMP instruction is en-
abled will be overwritten by the com-
plemented source values as a result of
the COMP operation.

GM-A120-LDR

PRE

Bit Comparison in a Data Matrix

The CMPR instruction compares the bit
pattern in one register matrix with the
bit pattern in another matrix. When a
bit value in one matrix miscompares

with the correspondingly positioned bit
value in the other matrix, a value indi-
cating that matrix location is posted in
the middle node.

Instruction| Structure '"rzl‘;ts Nodes Outputs Function
W)
Top: Top: Top:
Ox. 1x * ON initiates the matrix a echos the Compares bit patterns
I — 3"’ X" O] bit compare top input in matrixes a and b,
) X, o 4x and reports miscom-
coﬁ" Middle: Middle: Middle: pares
pare ’ ’ ;
. x - O 0= rgstart at last posts the bit posi-| miscompare
miscompare tion of the current{ detected
1 =restart atthe | ly detected mis-
beginning compared bit and
CMPR o points to
K matrix b, which
begins at 4x + 1 Bottom:
state of mis-
Bottom: compared bit
matrix length* in matrix a

the use of 16 discrete bits (1 ... 16, 17 ... 32, 33 ... 48, etc.).

* If you use a Ox or 1x reference, it must be given as a multiple of 16 + 1 (1, 17, 33, etc.), and it implies

** Kis an integer constant in the range 1 ... 100

A Bit Comparison Example

B T
10001
—{ }7 44622
10002 00143
CMPR
2
00144

This example shows a bit comparison
between two two-register matrixes. Ma-
trix a comprises registers 44620 and
44621; matrix b comprises registers
44623 and 44624:

Matrix a
0000000000000000
1000000010000000

40600

40601

Matrix b
0000000000000000
0000000000000000

40604
40605

Matrix a is compared against matrix b
bit by bit on every scan that contact

GM-A120-LDR

10001 transitions from OFF to ON until
one miscompare is found.

In the first transition of contact 10001,
the matrix bits are compared until bit
17, where the value in matrix a = 1 and
the value in matrix b = 0. At this point,
a value of 17 is posted in register
44622, the comparison stops, and coils
00143 and 00144 energize for one
scan.

If contact 10002 is energized, the func-
tion will begin to compare at matrix po-
sition 1 in the next transition of 10001
and stop again when the value in regis-
ter 44622 = 17. If contact 10002 is not
energized, the function will begin to
compare at matrix position 18 in the
next transition of 10001 and stop when
the value in register 44622 = 25.

Data Management Instructions

53 Dal

Sensing and Manipulating Bits in a

Data Matrix

Three instructions are provided to let O The bit-rotate (BROT) instruction

you examine and manipulate the bit pat- shifts the bit pattern in a matrix to the

terns in a data matrix: left or right, forcing the exiting bit to

O The bit-sense (SENS) instruction ex- either fall out of the matrix or wrap
amines and reports the sense—1 or onto the other end of the register
0—of specific bits in the matrix One bit per scan may be sensed, modi-

O The bit-modify (MBIT) instruction mo- fied, or rotated via these instructions.
difies the sense of a specific bit in a Each is a three-high nodal instruction.

matrix—i.e., changes a 0 bit to 1 and
clears a1 bitto 0

Instruction| Structure '"rzl‘;ts Nodes Outputs Function
W)
Top: Top: Top:
0x, 1x, * ON initiates the | source matrix echos the Rotates or shifts the
I' — ax orax [~ O bit rotation top input bit pattern in a matrix,
shifting the bits one
Bit Middle: Middle: Middle: position per scan
rotation 0 0x**or o | O=start left destination matrix| sense of the bit
1o 1 = start right rotating out of
Bottom: the matrix
BROT 0 = bit falls out
I — ek of the register
K 1=bitwrapsto | Bottom:
start of register | Matrix length*
Top: Top: Top:
3x. 4x ON reports the pointer to the echos the Examines and reports
I or Kqox | O sense of the matrix top input the sense of specific
Bit ! matrix bits bits—i.e., 1 or 0—in a
1 matrix; one bit per
sensing L oxor | o | Middte: Middle: Middle: e
ax increments the address of first copies the
pointer after a register in the sensed bit
bit sense matrix
| | SENS | 4
Ky Bottom: Bottom:
resets the Bottom: pointer > matrix
pointer to 1 matrix length** length
Top: Top: Top:
ON changes pointer to the echos the Changes the value of
| 3% 4 L o] thesense of matrix top input a bit in the matrix
or K4 the matrix bits from 0 to 1_or from 1
Bit . . . to 0; one bit per scan
modification 0x** or Middle: Middle: Middle: can be modified
| -4 4 | o O=clearhbit address of first echos the
1 = set bit register in the middle input
matrix
Bottom:
| - MBIT L o] incrementsthe Bottom:
Ky*e* pointer after bit Bottom: pointer > matrix
modification matrix length** length
* |If you use a Ox or 1x reference, it must be given as a multiple of 16 + 1 (1, 17, 33, etc.), and it implies
the use of 16 discrete bits (1... 16, 17 ... 32, 33 ... 48, etc.).
** |f Ox references are used as the destination, they cannot be programmed as coils, only as contacts
referencing those coil numbers
* K is an integer constant in the range 1 ... 100 ;
Kj is an integer constant in the range 1 ... 255

54 Data Manipulation Instructions

GM-A120-LDR

PRE

Warning MBIT and BROT will
override any disabled coils in
the matrix without enabling
them. If a coil has been dis-
abled for repair or mainte-
nance, there is the potential
for injury, since that coil’s
state can change as a result of
bit manipulation.

GM-A120-LDR Data Management Instructions 55 Dat

Chapter 8
The MSTR Instruction

o Overview

0 MSTR Function Error Codes

0 Read and Write MSTR Functions

0 Get Local Statistics

o Clear Local Statistics

0 Write Global Data

0 Read Global Data

0 Get Remote Statistics

0 Clear Remote Statistics

0 Read Peer Cop Communication Health

o0 Network Statistics

GM-A120-LDR The MSTR Instruction 57

Overview

The 984-145 Compact Controller sup-
ports Modbus Plus communications. A
special instruction called MSTR is pro-
vided with this controller to allow it to
initiate Modbus Plus message transac-
tions via ladder logic. An MSTR in-
struction allows you to initiate one of
eight possible operations:

Up to four MSTR instructions may be si-
multaneously active in a ladder logic
program. More than four MSTRs may
be programmed to be enabled by the
logic scan—i.e., as one active MSTR
releases the resources it has been us-
ing and becomes inactive, the next
MSTR encountered by the logic scan
may be activated.

MSTR Function Code MSTR is a three-high nodal instruction:
Write data 1
Read data 2
Get local statistics 3
Clear local statistics 4
Write global database 5
Read global database 6
Get remote statistics 7
Clear remote statistics 8
Read peer cop health 9
Instruction| Structure Inpzlt)lts Nodes Outputs Function
(©)
Top: Top: Top:
Modbus Plus I 4 o ON activates First of nine regis- | Selected function Initiates a Modbus
master function n X B the selected ters in the MSTR is active Plus communica-
MSTR function control block tion function from
Middle: Middle: ladder logic
1 4x |~ o Terminatesan i Operation has
activates MSTR Middle: terminated
operation The data area** unsuccessfully
MSTR o Bottom: Bottom:
K* B Maximum num- Operation has
ber of registers been completed
in the data area successfully

* Kis an integer constant in the range 1 ... 100

** For operations that provide the communications processor with data—e.g., write functions—the data area is

the source of the data. For operations that acquire data from the communications processor—e.g., read

functions—the data area is the destination of the data

58 The MSTR Instruction

GM-A120-LDR

PRE

MSTR Control Block (pointed to by the register in the top node)
Register Function
ax Identifies one of the nine MSTR functions

4x +1 Displays the error status in hex format (see error codes on the next page)

4x + 2 Displays the length (see descriptions of individual functions for specifics)

4x + 3 Displays function-dependent information (see descriptions of individual functions for specifics)

4x + 4 The Routing 1 register, which uses the bit value of the low byte to designate the address of the

destination device:
}47 high byte 4){(7 low byte 4>‘
Lol ofmlofofofofofofuf s afnfn]n]x]
I N N R N
displays a binary value in the range 1 ... 64 J

4x +5 The Routing 2 register

4x + 6 The Routing 3 register

4x +7 The Routing 4 register

4x + 8 The Routing 5 register

GM-A120-LDR

The MSTR Instruction

59

MSTR Function Error Codes

If an error occurs during the execution O M is the major code

of an MSTR function, a hexadecimal er-
ror code is displayed in register 4x + 1
of the MSTR control block.

o m is the minor code

0 ss is a subcode

The form of the code is Mmss, where:

Hex Error Code Meaning
1001 User-initiated abort
2001 Invalid operation type
2002 User parameter changed
2003 Invalid length
2004 Invalid offset
2005 Invalid length + offset
2006 Invalid slave device data area
2007 Invalid slave device network area
2008 Invalid slave device network routing
2009 Route = your own address
200A Attempting to acquire more global data words than are available
200B Peer cop change on read/write global data
200C Bad pattern for change of address request
200D Bad address for change of address request
30ss Modbus slave exception response
where
ss = 01 = Slave device does not support the requested function
ss = 02 = Nonexistent slave device registers requested
ss = 03 = Invalid data value requested
ss = 04 = Unassigned
ss = 05 = Slave has accepted long-duration program command
ss = 06 = Function cannot be performed now—a long-duration command is in effect
ss = 07 ...255 = Unassigned
4001 Inconsistent Modbus slave response
5001 Inconsistent network response
6mss Routing failure
where the m subfield is an index into the routing information, indicating where
where an error has been detected. A value of 0 indicates the local node, a
value of 2 indicates the second device on the route, etc.
And where
ss = 01 = No response received
ss = 02 = Program access denied
ss = 03 = Node offline and unable to communicate
ss = 04 = Exception response received
ss = 05 = Router node data path busy
ss = 06 = Slave device down
ss = 07 = Bad destination address
ss = 08 = Invalid node type in the routing path
ss = 10 = Slave has rejected the command
ss = 20 = Initiated transaction forgotten by the slave device
ss = 40 = Unexpected master output path received
ss = 80 = Unexpected response received
0007 Slave has rejected long-duration program command
FOOo1 Selected option is not present

60 The MSTR Instruction

GM-A120-LDR

PRE

Read and Write MSTR Functions

An MSTR write function transfers data
from a master source device to a speci-
fied slave destination device on the
Modbus Plus network.

An MSTR read function transfers data
from a specified slave source device on
the network to the master destination
device.

Read and write functions use one data
master transaction path and may be
completed over multiple scans.

The nine registers in the top node of the
MSTR instruction contain the following
information when you implement a read/
write function.

Control Block Utilization

Register MSTR Function Register Content
4x Operation type 1 = write, 2 =read
4x + 1 Error status A hex value representing an MSTR error where relevant, as
shown on previous page
4x + 2 Length Write = # of registers to be sent to a slave

Read = # of registers to be read from a slave

4x + 3 Slave device

Specifies first register in the slave to be read or written

data area (1 = 40001, 49 = 40049, etc.)
4x + 4, + 5, Routing 1, 2, 3, Specifies the first through the fifth routing path addresses, respectively.
+6, +7, +8 4, 5, respectively The last nonzero byte in the routing path is the destination device

= Note If you attempt to program
an MSTR instruction to read or
write its own address, an error will
be generated in the second regis-
ter of the control block.

= Note It is possible to attempt a
read/write operation with a nonex-
istent register in a slave device.
The slave will detect this condition
and report it as an error, but it
may take multiple scans to detect
it.

Get Local Statistics

The MSTR get local statistics function
obtains operational information related
to the local node—i.e., the controller
where the MSTR instruction has been
programmed.

GM-A120-LDR

I= Note For a full discussion of
Modbus Plus routing path struc-
tures, refer to Modbus Plus Plan-
ning and Installation Guide
(GM-MBPL-001).

This function does not require a data
master transaction path, and it takes
one scan to complete.

The first four registers in the MSTR
control block are used with this function.

The MSTR Instruction 61

Control Block Utilization

Register MSTR Function Register Content
4x Operation type 3

4x +1 Error status A hex value representing an MSTR error where relevant
Starting from an offset, the # of words of statistics from the

4x +2 Length local processor’s statistics table. Must be > 0 < K as speci-
fied in the bottom node of the instruction
A value relative to the first available word in the local proces-

4x+3 Offset sor’s statistics table—if the offset = 1, the function obtains
statistics starting with the second word of the table

= Note The network statistics are
given at the end of this chapter.

Clear Local Statistics

The MSTR clear local statistics function
clears operational information related to
the local node—i.e., the controller
where the MSTR instruction has been
programmed.

This function does not require a data
master transaction path, and it takes
one scan to complete.

The first two registers in the MSTR con-
trol block are used with this function.

Control Block Utilization

Register MSTR Function Register Content
4x Operation type 4
4x +1 Error status A hex value representing an MSTR error where relevant

= Note The network statistics are
given at the end of this chapter.

Write Global Data

The MSTR write global data function
transfers data to the comm processor in
the current node so that it can be sent
over the network when the nodes gets
the token. All nodes on the network
can receive this data.

62 The MSTR Instruction

This function does not require a data
master transaction path, and it takes
one scan to complete.

The first three registers in the MSTR

control block are used with this function.

GM-A120-LDR

PRE

Control Block Utilization
Register MSTR Function Register Content
4x Operation type 5
4x +1 Error status A hex value representing an MSTR error where relevant
Specifies the # of registers from the data area to be sent to
ax +2 Length the comm processor. Must be < 32 and must not exceed K
as specified in the bottom node of the instruction

Read Global Data

The MSTR read global data function
gets data from the comm processor in
any node node on the local network link
that is providing global data.

This function does not require a data
master transaction path, and it may take
multiple scans to complete.

The first four registers in the MSTR
control block are used with this function.

Control Block Utilization
Register MSTR Function Register Content
4ax Operation type 6

4x +1 Error status A hex value representing an MSTR error where relevant
Specifies the # of words of global data to be requested from

4ax +2 Length the comm processor designated by the routing path 1 pa-
rameter. Must be > 0 < 32 and must not exceed K as speci-
fied in the bottom node of the instruction

ix+3 Availabl d Contains the # of words available from the requested node.

X+ vallable words automatically updated by the internal software.
GM-A120-LDR

The MSTR Instruction 63

Get Remote Statistics

The MSTR get remote statistics function
obtains operational information related
to remote nodes on the network.

This function does not require a data
master transaction path, and it may take

multiple scans to complete.

The remote comm processor always re-
turns it complete statistics table when a
request is made, even if the request is
for less than the full table. The MSTR
instruction then copies only the amount
of words you have requested to the
designated registers.

The nine registers in the MSTR control
block are used as shown below for this

function.
Control Block Utilization
Register MSTR Function Register Content
4x Operation type 7
4x +1 Error status A hex value representing an MSTR error where relevant
Starting from an offset, the # of words of statistics from the
remote node. Must be > 0 < the total number of statistics
Ax+2 Length available (54) and must not exceed the number of statistic
words available
A value relative to the first available word in the statistics
4x+3 Offset table—the value must not exceed the number of statistic
words available
4x + 4, + 5, Routing 1, 2, 3, Specifies the first through the fifth routing path addresses, respectively.
+6,+7,+8 4, 5, respectively The last nonzero byte in the routing path is the destination device

Clear Remote Statistics

The MSTR clear remote statistics func-
tion clears operational statistics related
to a remote node from the data area of

the local node.

This function uses one data master
transaction path, and it may take multi-
ple scans to complete.

Seven of the registers in the MSTR
control block are used for this function:

Control Block Utilization
Register MSTR Function Register Content
4ax Operation type 8
4x +1 Error status A hex value representing an MSTR error where relevant
4x + 4, + 5, Routing 1, 2, 3, Specifies the first through the fifth routing path addresses, respectively.
+6,+7,+8 4, 5, respectively The last nonzero byte in the routing path is the destination device

[Note For a full discussion of

Modbus Plus routing path struc-

tures, refer to Modbus Plus

Planning and Installation Guide
(GM-MBPL-001).

64 The MSTR Instruction

GM-A120-LDR

PRE

Read Peer Cop Communication Health

The MSTR read peer cop communica-
tion health function loads a specified
subset of the peer cop communication
health table into 4x registers in the con-
troller’s state RAM. This table com-
prises 12 words.

The first four registers in the MSTR
control block are used with this function.

Control Block Utilization
Register MSTR Function Register Content
4x Operation type 9
4x +1 Error status A hex value representing an MSTR error where relevant
4x + 2 # of words requested Therangeis 1 ... 12
4x + 3 Starting word index Therangeis 0 ... 11

The Peer Cop Communication Health Table

The peer cop communication health
table contains 12 words, word O ... word
11, as shown below.

Type of
Word Health Status for Nodes
0 Global inputs 1..16
1 Gilobal inputs 17... 832
2 Global inputs 33...48
3 Gilobal inputs 49 ... 64
4 Specific outputs 1..16
5 Specific outputs 17... 32
6 Specific outputs 33...48
7 Specific outputs 49 ... 64
8 Specific inputs 1..16
9 Specific inputs 17... 32
10 Specific inputs 33...48
1 Specific inputs 49 ... 64

The most significant bit of word 0 gives
the health of the global input communi-
cation expected from node 16. The
least significant bit on word 0 gives the
health of the global input communica-
tion expected from node 1. All words in
the table use this format.

GM-A120-LDR

The associated health bit is 0 for every
null peer cop entry. A health bit is set
when the node accepts inputs for the
associated peer copped input data
group or when it hears that another
node has accepted specific output data
from the associated peer copped output
data group at this node. A peer cop
health bit is cleared when no communi-
cation has occurred for the associated
data group within the configured peer
cop health timeout period.

All health bits are cleared when a
START PLC command is executed.

The specific input and global input
health words are not valid until at least
one full token rotation cycle has com-
pleted. The peer cop health bits are al-
ways valid when this peer node is not in
the normal token operation state.

During the first few scans that the
specific output health bits are declared
invalid, the controller sets all specific
output health bits. Upon initial start-up
of the controller, all nodes peer copped
with specific outputs have their asso-
ciated health bits set to 1, meaning

The MSTR Instruction 65

healthy. This start-up condition enables
you to create ladder logic that compares
the health bits without having to create
special conditions during start-up, which
would be the case if the values of the
health bits were unknown.

66 The MSTR Instruction

GM-A120-LDR

PRE

Network Statistics

You can acquire the following network [= Note When you use a clear local
statistics by using the appropriate statistics or clear remote statistics
MSTR function or by using Modbus function, only words 13 ... 22 are
function code 8. cleared.
Modbus Plus Network Statistics
Word Byte Meaning
00 Node type I.D. :
0 Unknown node type
1 Standard programmable controller node
2 Bridge MUX
3 Host
4 Bridge Plus
5 Peer 1/O
Comm processor version (the first release was 1.00 and was displayed
01
as 0100 hex)
02 Network address for this station
03 MAC state variable :
0 Power-up state
1 Monitor offline state
2 Duplicate offline state
3 Idle state
4 Use token state
5 Work response state
6 Pass token state
7 Solicit response state
8 Check pass state
9 Claim token state
10 Claim response state
04 Peer status (LED code); provides the status of the unit relative to the network :
0 Monitor link operation
32 Normal link operation
64 Never getting token
96 Sole station
128 Duplicate station
05 Token pass counter; increments each time the station gets the token
06 Token rotation time in ms
07 LO Data master failed during token ownership bit map
HI Program master failed during token ownership bit map
08 LO Data master token owner work bit map
HI Program master token owner work bit map
09 LO Data slave token owner work bit map
HI Program slave token owner work bit map
10 LO Data master/get master response transfer request bit map
HI Data slave/get slave command transfer request bit map
1 LO Program master/get master response transfer request bit map
HI Program slave/get slave command transfer request bit map
LO Program master connect status bit map
12 - .
HI Program slave automatic logout request bit map

GM-A120-LDR The MSTR Instruction 67

Modbus Plus Network Statistics (continued)

Word Byte Meaning
13 LO Pretransmit deferral error counter
HI Receive buffer DMA overrun error counter
14 LO Repeated command received counter
HI No try counter (nonexistent station)
15 LO Cable A framing error
HI Cable B framing error
16 LO UART error
HI Bad packet-length error counter
17 LO Bad link address error counter
HI Transmit buffer DMA-underrun error counter
18 LO Bad internal packet length error counter
HI Bad MAC function code error counter
19 LO Communication retry counter
HI Communication failed error counter
20 LO Good receive packet success counter
HI No response received error counter
21 LO Exception response received error counter
HI Unexpected path error counter
20 LO Unexpected response error counter
HI Forgotten transaction error counter
23 LO Active station table bit map, nodes 1 ... 8
HI Active station table bit map, nodes 9 ... 16
24 LO Active station table bit map, nodes 17 ... 24
HI Active station table bit map, nodes 25 ... 32
25 LO Active station table bit map, nodes 33 ... 40
HI Active station table bit map, nodes 41 ... 48
26 LO Active station table bit map, nodes 49 ... 56
HI Active station table bit map, nodes 57 ... 64
27 LO Token station table bit map, nodes 1 ... 8
HI Token station table bit map, nodes 9 ... 16
28 LO Token station table bit map, nodes 17 ... 24
HI Token station table bit map, nodes 25 ... 32
29 LO Token station table bit map, nodes 33 ... 40
HI Token station table bit map, nodes 41 ... 48
30 LO Token station table bit map, nodes 49 ... 56
HI Token station table bit map, nodes 57 ... 64
31 LO Global data present table bit map, nodes 1 ... 8
HI Global data present table bit map, nodes 9 ... 16
32 LO Global data present table bit map, nodes 17 ... 24
HI Global data present table bit map, nodes 25 ... 32
33 LO Global data present table bit map, nodes 33 ... 40
HI Global data present table bit map, nodes 41 ... 48
34 LO Global data present table bit map, nodes 49 ... 56
HI Global data present table bit map, nodes 57 ... 64
35 LO Receive buffer in use bit map, nodes 1 ... 8
HI Receive buffer in use bit map, nodes 9 ... 16
36 LO Receive buffer in use bit map, nodes 17 ... 24
HI Receive buffer in use bit map, nodes 25 ... 32
37 LO Receive buffer in use bit map, nodes 33 ... 40
HI Station management command-processed initiation counter
68 The MSTR Instruction GM-A120-LDR

PRE

Modbus Plus Network Statistics (concluded)

Word Byte Meaning
3 LO Data master output path 1 command initiation counter
HI Data master output path 2 command initiation counter
39 LO Data master output path 3 command initiation counter
HI Data master output path 4 command initiation counter
40 LO Data master output path 5 command initiation counter
HI Data master output path 6 command initiation counter
41 LO Data master output path 7 command initiation counter
HI Data master output path 8 command initiation counter
42 LO Data slave input path 41 command processed counter
HI Data slave input path 42 command processed counter
43 LO Data slave input path 43 command processed counter
HI Data slave input path 44 command processed counter
44 LO Data slave input path 45 command processed counter
HI Data slave input path 46 command processed counter
45 LO Data slave input path 47 command processed counter
HI Data slave input path 48 command processed counter
46 LO Program master output path 81 command initiation counter
HI Program master output path 82 command initiation counter
47 LO Program master output path 83 command initiation counter
HI Program master output path 84 command initiation counter
48 LO Program master output path 856 command initiation counter
HI Program master output path 86 command initiation counter
49 LO Program master output path 87 command initiation counter
HI Program master output path 88 command initiation counter
LO Program slave input path C1 command processed counter
50 .
HI Program slave input path C2 command processed counter
51 LO Program slave input path C3 command processed counter
HI Program slave input path C4 command processed counter
LO Program slave input path C5 command processed counter
52 .
HI Program slave input path C6 command processed counter
LO Program slave input path C7 command processed counter
53 .
HI Program slave input path C8 command processed counter
GM-A120-LDR The MSTR Instruction

69

Chapter 9
Other Standard
Instructions

0 Skipping Networks
0 Checking the Controller’s Health Status
0 The Subroutine Instructions

o0 Sweep Instructions

GM-A120-LDR Other Standard Instructions 71

Skipping Networks

The SKP instruction allows you to skip
a specified number of networks in a lad-
der logic program.

When it is powered, the SKP operation
is performed on every scan. The re-
mainder of the network in which the in-
struction appears counts as the first of
the specified number of networks to be
skipped; the CPU continues to skip net-
works until the total number of networks
skipped equals the number specified in
the instruction block or until a segment
boundary is reached. A SKP operation
cannot cross a segment boundary.

A SKP instruction can be activated only
if you specify in the controller set-up
editor that skips are allowed.

Warning If inputs and out-
puts that normally effect con-

trol are unintentionally
skipped (or not skipped), the
result can create hazardous
conditions for personnel and
application equipment.

SKP is a one-high nodal instruction.

Instruction| Structure '"rzl‘;ts Nodes Outputs Function
0)
Top: Top: Bypasses networks
Skip logic | SKP ON activates Specifies the num-{ of ladder logic in the
networks 1 8x,4x, the skip function | ber of logic net- program and does
or K* works to be not solve skipped
skipped logic
*K is an integer constant in the range 1 ... 255
A Simple SKP Example
When contact 10001 is closed, the re-
B Network 06
mainder of network 06 and all of net-
10003 00001

work 07 are skipped. Power flow in the
skipped networks is invalid. Coil 00001
is still controlled by contact 10003 be-
cause it is solved before the SKP.

72 Other Standard Instructions

1]
10001 2

Network 07

10003 00002

GM-A120-LDR

PRE

Checking Compact Health Status

The Compact Controllers maintain a
table in memory that contains vital sys-
tem diagnostic information regarding the
CPU, 1/O, and communications. This
table is 56 words long, and its contents
are structured as follows:

Status Content of
Word Status Register
1.1 Controller status information
12..15 Health of A120 I/O modules
16 ... 181 Not used
182 ... 184 Global health and communications
retry status

Each status word is 16 bits long, and
the status information is conveyed by
the sense of the bits in each word. The
illustrations on the following pages show
how the status information is presented
in the status table.

The words in the status table can be
accessed in ladder logic using the STAT
instruction. The STAT block displays
the bit patterns of the status words in a
table of contiguous 4x registers, the val-
ues of which can then be seen in the
panel software.

[Note Although you are allowed
to specify either a Ox or 4x regis-

ter in the top node, we recom-
mend that you specify a 4x be-
cause of the excessive number of
Ox registers that would be required
to manage the status information.

The register you specify in the top node
of the block is loaded with the current
word 1 bit values, and as many regis-
ters as you specify in the bottom node
will be loaded with bit values from the
corresponding words in the status table.

For example, if you are interested only
in accessing controller status informa-
tion, you could specify a register ad-
dress of, say, 40701 in the top node of
the block and a value of 11 in the bot-
tom node—the bit values of the first 11
words in the status table will be loaded
into registers 40701 ... 40711, respec-
tively.

If you want to load the whole status
table, specify 184 in the bottom node of
the instruction. If you are not using ex-
panded 1/O, you need only specify 40 in
the bottom node to get all the relevant
status information.

STAT is a two-high nodal instruction.

Instruction| Structure Inpzlt)lts Nodes Outputs Function
Procy
. . {Y)
Top: Top: Top!
ON accesses First word in operation Gets status dat
[I O the statustable | the system completed 1S status data
Check CPU/ Ox or 4x statug table P from the status
I/O Status table in system
Bottom: memory and dis-
STAT size of the plays it in user
K* status table registers
*K is an integer constant in the range 1 ... 184

GM-A120-LDR

Other Standard Instructions

73

The Compact Controller Status Table

Word 1 CPU Status
If the bit is set to 1, the condition is TRUE

S]] o o]

L Battery failed
— Memory protect OFF
— RUN light OFF
AC power ON
— 1 =16-bit user logic

— Single Sweep enabled

— Constant Sweep enabled

Word 2 is not used

Word 3 Controller Status
If the bit is set to 1, the condition is TRUE
‘ 1 ‘ 2 ‘ 3 ‘lzl ‘@“‘@‘-10 1] #-12 13‘ 14‘ 15‘ 16‘
\

L Exit dim awareness S :‘

ingle sweeps

Scan time has exceeded constant scan target
START command pending
— Firstscan

Word 4 is not used

Word 5 CPU Stop State Conditions
If the bit is set to 1, the condition is TRUE

nBEr

5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘16‘

‘ L Bad PLC setup
— Coil disabled in RUN mode
— Logic checksum error
'— Invalid node in ladder logic
L CPU failure

— Real time clock error

— Watchdog timer has expired
— No end-of-logic (EOL)
— State RAM test has failed

— No start-of-network (SON) at the start of a segment

— Invalid segment scheduler

— lllegal peripheral intervention

— Dim awareness

— Peripheral port stop

74 Other Standard Instructions GM-A120-LDR

The Compact Controller Status Table (continued)

Word 6 Segments in Program

‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘16‘
[[1T T T T T T]

Number of segments in the current ladder logic program

4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘16‘
[1 [T 1T T T]

Address of the EOL pointer]

Word 8 is used only with the 984-145; it provides memory sizing information to the programming panel.

Word 9 is not used

Word 10 RUN/LOAD/DEBUG Status

el])

—]

S EEEEEEE

DEBUG= 0 0
RUN = 0 1
LOAD = 1 0

Word 11 is not used

Words 12 ... 15 are used to display the health of the A120 I/O modules in the four racks:

Word 12 Rack 1
Word 13 Rack 2
Word 14 Rack 3
Word 15 Rack 4

Each word contains the health status of up to five A120 I/O modules. The most significant (leftmost) bit
represents the health of the module in slot 1 of the rack:

L Slot 5

Slot 4
— Slot 3

— Slot2
Slot 1

[[efe]e]: [m]

If an 1/0 module is traffic copped and ACTIVE, the bit will have a value of 1. If the module is inactive or
not traffic copped, the bit will have a value of 0.

Slots 1 and 2 in rack 1 (word 12) are not used because the controller itself uses those two slots.

Words 16 ... 181 are not used

GM-A120-LDR Other Standard Instructions 75

The Compact Controller Status Table (concluded)

The last three words describe health and communications on the installed A120 1/O modules

Word 182 Systemwide I/O Health Status

B EEEEE

1 = All /O modules are healthy

Unhealthy module counter —

Bits 9 ... 16 are used as a counter that increments each time an unhealthy module is encountered. The counter
rolls over at a count of 255.

Word 183 1/O Error Count

el o] ol u]e]e)
[[[T 7 [[] [T [T [[]

Counts the number of scans in
which a module stays unhealthy

Bits 1 ... 16 are used as a counter that increments once on each logic scan while an I/O module is unhealthy.

Word 184 PAB Bus Retry Count

el sl « Lo ol u]e]e)
[[[T 7 []

Counts the number of consecutive
communication retries on the PAB

Normally, all bits in this word should be 0s. Bits 1... 16 are used as a counter that increments once each time a
comm retry occurs. If after five retries a bus error is still detected, the controller stops and displays error code
10 on the programming panel.

76 Other Standard Instructions GM-A120-LDR

PRE

The Subroutine Instructions

Subroutine logic can be initiated by a
program-based instruction (JSR) in the
control logic. When a subroutine is initi-
ated, the logic scan jumps to an instruc-
tion in the last segment called LAB.
This instruction labels the beginning of
that subroutine’s logic. When the logic
scan reaches an instruction in the sub-

routine called RET, it jumps out of that
subroutine and returns to its previous
position in the control logic.

Subroutine logic is always kept in the
last segment of the ladder logic pro-
gram. No other logic except the sub-
routine logic is stored there.

Inputs

Outputs

Instruction Structure 0 Nodes Function
. . (V)
Top: Top: Top: Causes the logi
ON enablesthe | A constant or reg-| echos the i gic scan
axor source subroutine| ister value that in- | top input to jump to a specified
— — f _ subroutine in the last
Jump toa K* dicates the de (unscheduled) seg-
subroutine sired subroutine ment of user logic
Bottom:
850%1 [Always a con- Bottom:
stant value of 1 ON if an error
is detected
Top: Top: Top: Marks the starting
Label the | LaB | ON activates A unique constant| ON if an error point of the sub-
subroutine K* the specified value that identi- | is detected routine in the user
subroutine fies the selected logic segment
subroutine
Top: Top: Top: Returns the logic
Return to | RET L ON initiates the | Always a con- ON if an error scan tc;). t:]el nfoclile
ladder logic 00001 return out of the | stantvalue of 1 | is detected !mmﬁ |aley ollow-
subfunction ing the place

where the subrou-
tine was entered

*K is an integer constant in the range 1 ... 255

GM-A120-LDR

Other Standard Instructions 77

Below is a conceptual illustration of how
a subroutine is called from ladder logic.
When the logic scan in segment 1 en-
counters an enabled JSR instruction, it
jumps to the indicated subroutine in
segment 2. Only the logic associated
with the called subroutine is scanned in

segment 2—all other subroutine logic is
ignored.

When the logic scan encounters a RET
instruction in the subroutine logic, it

jumps back to the node immediately fol-
lowing the JSR instruction in segment 1.

SEGMENT 1

Network 1

i

Network 2

Network 3 \

i

ARRAAEES

Network 1

—| LAB
B 00001

Network 2

SEGMENT 2

Logic for
subroutine #1

RET
00001

Logic for
subroutine #2

Network 3 /

78 Other Standard Instructions

GM-A120-LDR

PRE

Sweep Instructions

Sweep functions allow you to scan logic
at fixed intervals—they do not make the
controller solve logic faster or terminate
scans prematurely. Sweeps may be
constant or predetermined over some
fixed number of scans—i.e., single
sweeps.

Constant sweep allows you to target
your scan times from 10 ... 200 ms (in
multiples of 10 ms). A target scan time
is the time that elapses between the
start of one scan and the start of the
next. If a constant sweep is invoked
with a time lapse smaller than the ac-
tual scan time, the sweep time is ig-
nored and the system uses its normal
scan rate.

The target scan time in a constant
sweep encompasses logic solve time,
1/0 and Modbus port servicing, and sys-
tem diagnostics. If you set a constant
sweep target scan at 40 ms and the ac-
tual logic solve, port servicing, and diag-
nostics require only 30 ms, the control-
ler will wait for 10 ms at the end of each
scan before continuing to the next.

GM-A120-LDR

Single sweep functions allow your con-
troller to execute a fixed number of
scans—from 1 ... 15—and then to stop
solving logic but continue servicing 1/0.
This function is useful for diagnostic
work. It allows solved logic, moved
data, and completed calculations to be
examined for errors.

Warning Single sweeps
should not be used to debug
controls on machine tools,
processes, or material handl-
ing systems once they have
become active. Once the spe-
cified number of scans has
been solved, all the outputs
are frozen in their last state;
since no logic solving takes
place, the controller ignores
all input information. This can
result in unsafe, hazardous,
and destructive operation of
the tools or processes con-
nected to the controller.

Consult your programming documenta-
tion for procedures to invoke sweep in-
structions.

Other Standard Instructions 79

Chapter 10
Enhanced Instructions

0 Block<sTable Move Instructions
0 The Checksum Instruction
o The Proportional-Integral-Derivative Instruction

0 Extended Math Instructions

GM-A120-LDR Enhanced Instructions

81

Block<>Table Move Instructions

Instruction| Structure '"rzl‘;ts Nodes Outputs Function
To0: : (0)
op: Top: Top:
ON initiates the First register in ON when opera- -
I -| 4 [~ O move the source block | tion is completed | Moves large quantities
of 4x registers from a
Block-to-table Middle: Middle: Middle: fixed source block to a
move ON freezes the | pointer to the first | Error detected— | destination in a table
I — 4x +— O pointer register (4x + 1) in| Move not possible
the destination
table
| BLKT Bottom: Bottom:
K* ON resets the size of the desti-
pointer to 0 nation table
Top: Top: Top:
ON initiates the | First register in ON when opera- | Moves a large number
1 — 4x — O| move the source table | tion is completed | Of CC:mbI?U?US ;_eglzters
in a table to a fixed-
Table-to-black Middle: Middle: Middle: destination block
move :)
ON freezes the pointer to the first | Error detected—
I — 4x +— O pointer register (4x + 1) in| Move not possible
the destination
block
| TBLK Bottom: Bottom:
K* ON resets the size of the desti-
pointer to 0 nation block
*K is an integer constant in the range 1 ... 100

82 Enhanced Instructions

GM-A120-LDR

PRE

The Checksum Instruction

-145 contains MSTR, which is specific
to the Modbus Plus functionality of that

The CKSM instruction is not offered as
part of the standard instruction set for

the 984-145 Controller. Instead, the controller.
Instruction| Structure '"’zl‘;ts Nodes Outputs Function
Top: Top: Top.‘u)
ON calculates the| First register in ON when calcula- f
— ax — source table cksm| the source table tion is completed Performs straight

Checksum

Middile:
Used with bottom
input to determine

input to determine|
cksm type

Middile:
First of two regis-
ters containing

size of the source
table

Middile:
Error detected:
register count = 0

check, binary addi-
tion check, CRC-16
check, or LRC check,
depending on state

- 4x — f
cksm type the result and the or of the middle and
implied register register count > bottom inputs (see
count size of the source | table below)
CKSM Bottom: table
K* Used with middle | Bottom:

*K is an integer constant in the range 1 ... 255

CKSM Input Usage

CKSM Calculation || [Middle Input || [Bottom Input |
Straight check OFF ON
Binary addition ON ON
CRC-16 ON OFF
LRC OFF OFF
GM-A120-LDR Enhanced Instructions 83

The Proportional-Integral-Derivative
Instruction

Instruction| Structure '"’zl‘;ts Nodes Outputs Function
. . (V)
Top: Top: Top:
0 = Manual Mode | First of 21 regis- | invalid parameter ~
I — ax — O | 1=Auto Mode ters in the source or Irzphprlr?m:l?‘pfe?%?rlngso
. table loop active but not| specified P, PI, or
Proportional- I(;/,f?'l;cking ON | Middle: being solved PID operation, as de-
Integral- I 4 4x | O|1=Tracking OFF | First of 9 registers fined in registers
Deriviative used by the block | , . 4x + 5, 4% + 6,
for calculations | Middle: 4x + 7, and 4x + 8 of
PV > low alarm the source table
| PID2 | o Bottom: Bottom: limit*r*
K* 0 = output in- constant repre-
creases as E** | senting the inter-
increases val at which the
1 = output de- calculation is per- | Bottom:
creases as E** | formed in tenths of PV > low alarm
increases a second limit*=*

*Kis an integer constant in the range 1 ... 255
** E is error expressed in raw analog units
** PV is the process variable

Source Table Register Value

Block
Function 4x +5 4x +6 ax +7 4x +8
P non-zero zero zero non-zero
Pl non-zero non-zero zero zero
Pl non-zero non-zero non-zero zero

PID2 Source Table (Top Node)

Register Number

Register Content

Scaled PV: loaded by the block each time it is scanned; a linear scaling is done on register 4x + 13
using the high and low ranges in 4x + 11 and 4x +12:

register for PID2 to

operate

ax reg 4x + 13
scaledPV= ——— x (reg4x+ 11 - reg4x+12) + regdx +12
4095

Truncate the result at the decimal point and discard all digits to the right of the decimal point—do not

round off the result.
4x +1 SP: the set point specified in engineering units; its value must be > 4x + 11 > 4x + 12

My: loaded by the block every time the loop is solved; it is clamped to the range 0 ... 4095, making
4x + 2 the output compatible with an analog output; the manipulated variable register may be used for

furhter CPU calculations such as cascaded loops

High alarm limit: load a value into this register to specify a high alarm for PV (at or above SP); enter
4x + 3 . y - " - e >

the value in engineering units within the range specified in registers 4x + 11 and 4x + 12

Low alarm limit: load a value into this register to specify a low alarm for PV (at or below SP); enter
4x + 4 N " N N e e "

the value in engineering units within the range specified in registers 4x + 11 and 4x + 12

Proportional band: load this register with the desired proportional constant in the range 5 ... 500;
4x +5 the smaller the number, the larger the proportional contribution; a valid number is required in this

84 Enhanced Instructions

GM-A120-LDR

PRE

Proportional-Integral-Derivative Instruction (continued)

PID2 Source Table (Top Node)

Register Number

Register Content

4x + 6

Reset time constant: load this register to add integral action to the calculation; the value is an
integer constant in the range 0000 ... 9999, representing a range of 00.00 ... 99.99 repetitions
per minute—values <9999 or >0000 stop the PID2 calculation; the larger the number, the larger
the integral contribution

4x+7

Rate time constant: load this register to add derivative action to the calculation; the value is an
integer constant in the range 0000 ... 9999, representing a range of 00.00 ... 99.99 repetitions
per minute—values <9999 or >0000 stop the PID2 calculation; the larger the number, the larger
the derivative contribution

4x + 8

Bias: load this register to add a bias to the output—the value, which is added directly to M,, must be
between 0000 ... 4095

4x +9

High integral wind-up limit: load this register with the upper limit of the output value (between
0 ... 4095) where the anti-reset wind-up takes place; if the specified value (normally 4095) is
exceeded, the integral sum is no longer updated

4x + 10

Low integral wind-up limit: load this register with the lower limit of the output value (between
0 ... 4095) where the anti-reset wind-up takes place—the specified value is normally 0

ax + 1

High engineering range: load this register with the highest value for which the measurement
device is spanned—e.g., if a resistance temperature device ranges from 0 ... 500 degrees C,
the high engineering range value is 500; the high range value must be specified as a positive
integer between 0001 ... 9999, corresponding to a raw analog input value of 4095

4x +12

Low engineering range: load this register with the lowest value for which the measurement
device is spanned; the low range value must be specified as a positive integer between

0001 ... 9998, corresponding to a raw analog input value of 0—it must be less than the value
specified in register 4x + 11

4x +13

Raw analog measurement: the logic program loads this register with PV; the measurement
must be scaled and linear in the range 0 ... 4095

ax + 14

Pointer to loop counter register: the value you load in this register points to the register that
counts the number of loops solved in each scan; the value entered in the register is the refer-
ence number of the register where the loop count is kept—e.g., if register 41236 keeps the
count, enter the value 1236 in register 4x + 14 of the PID2 source table; the same value must
be loaded to the 4x + 14 register in the source table of every PID2 block in a logic program

4x + 15

Maximum number of loops/scan: if register 4x = 14 contains a non-zero value, you may load a
value into this register to specify the limit on the number of loops to be solved in a single scan

4x + 16

Pointer to reset feedback input: the value you load in this register points to the holding register
that contains the feedback value (F); integration calculations rely on the F value being connected
to My—as the PID2 output varies from 0 ... 4095, so should F vary from 0 ... 4095; the value
entered in the register is the feedback register reference number—e.g., if the feedback register is
42250, enter the value 2250 in register 4x + 16 of the PID2 source table

ax +17

Output clamp high: the value entered in this register determines the upper limit of M,, (normally 4095)

4x +18

Output clamp low: the value entered in this register determines the lower limit of M, (normally 0)

4x +19

RGL constant: the rate gain limit value entered in this register determines the effective degree of
derivative filtering; the range for this value is from 2 ... 30; the smaller the value, the more filtering
takes place

4x + 20

Pointer to track input: the value entered in this register points to the holding register containing the
track input (T) value; the T value is connected to the input of the integral lag whenever the auto bit
and track bit are both TRUE; the value entered in this register is the track input register reference
number—e.g., if the track input register is 40956, enter 0956 in register 4x + 20 in the PID2 source
table

GM-A120-LDR

Enhanced Instructions 85

Proportional-Integral-Derivative Instruction (continued)

PID2 Calculation Block (Middle Node)

Register Number

Register Content

4x

Loop status register
‘1‘2‘ 3‘4‘5‘6‘ 7‘ 8‘ 9‘10‘11‘12‘13‘14‘15‘16‘

‘ ‘7 see note

Man/Auto status
of top input

— Tracking ON/OFF
status of middle input

__ Output increase/decrease
status of bottom input

_ Negative values in
the equation

— Integral wind-up limit exceeded
Always set to 1

0
1

+E in source register 4x + 6
-E in source register 4x + 6

Referencing of 4x + 14 by 4x + 15 is valid

Loop in Auto Mode but not being solved

— In Wind-down Mode

Loop in Auto Mode and time since last solution > solution interval
— Bottom output ON
— Middle output ON

— Top output ON

Note: Bit 16 is set after initial start-up or installation of the loop. If the bit is cleared, the
following actions all take place in one scan:

The loop status register is rest

The current value in the real-time clock is stored in register 4x + 1 in this
block

Registers 4x + 3, 4x + 4, and 4x + 5 in this block are set to zero

The value in source table register 4x + 13 is multiplied by 8 and stored in
register 4x + 6 of this block

Register 4x + 7 and 4x + 8 in this block are cleared

86

Enhanced Instructions

GM-A120-LDR

PRE

Proportional-Integral-Derivative Instruction (continued)

PID2 Calculation Block (Middle Node)

Register Number Register Content

4x +1 Error (E) status
Bit Check This Register in the
Code Meaning Source Table (Top Node)
0000 No errors, all validations OK
0001 Scaled SP above 9999 4x +1
0002 High alarm above 9999 4x + 3
0003 Low alarm above 9999 4x + 4
0004 Proportional band below 5 4x +5
0005 Proportional band above 500 4x +5
0006 Reset above 99.99 repeats/min 4x + 6
0007 Rate above 99.99 min ax +7
0008 Bias above 4095 4x + 8
0009 High integral limit above 4095 4x +9
0010 Low integral limit above 4095 4x + 10
0011 High engineering unit scale above 9999 4x + 1
0012 Low engineering unit scale above 9999 4x +12
0013 High engineering unit scale below low engineering unit 4x + 11 and 4x + 12
0014 Scaled SP above high engineering unit 4x +1and 4x + 11
0015 Scaled SP below low engineering unit 4x +1and 4x + 11
0016 Loops/scan > 9999 (4x+15=0)
0017 Reset feedback pointer out of range 4x + 16
0018 High output clamp above 4095 4x +17
0019 Low output clamp above 4095 4x +18
0020 Low output clamp above high output clamp 4x + 17 and 4x + 18
0021 RGL below 2 4x +19
0022 RGL above 30 4x +19
0023 Track F pointer out of range 4x + 20 and middle input ON
0024 Track F pointer is zero 4x + 20 and middle input ON
0025 Node locked out (short of scan time) see note below
0026 Loop counter pointer is zero 4x + 14 and 4x + 15
0024 Loop counter pointer out of range 4x + 14 and 4x + 15
Note: If lockout occurs often and all the parameters are valid, increase the maximum allowable
number of loops/scan. Lockout may also occur if the counting registers in use are not cleared
as required.
Loop timer register: stores the real-time clock reading on the system clock each time the loop

ax + 2 is solved; the difference between the current clock value and the value stored in this register is
the elapsed time; if elapsed time > the solution interval (10 times the value given in the bottom
node of the PID2 block), the loop should be solved in the current scan

4x + 3

4ax + 4 Reserved for internal use

4x +5

GM-A120-LDR Enhanced Instructions

87

Proportional-Integral-Derivative Instruction (concluded)

PID2 Calculation Block (Middle Node)

Register Number

Register Content

P, x 8 (filtered): stores the result of the filtered analog input (from source register 4x + 14)

4x+6 multiplied by eight; this value is useful in derivative control operations
Absolute value of E: contains the absolute value of SP - PV; bit 8 in register 4x + 1 of
4x +7 this block indicates the sign of E; the value in this register is updated after each loop
solution
4x + 8 Reserved for internal use

88 Enhanced Instructions GM-A120-LDR

PRE

Extended Math Instructions

Instruction| Structure Inpzlt)lts Nodes Outputs Function
Procy
{J)
Top: Top: Top:
ON initiates the | First of two con- ON when calcula- Adds operand 1 (the
4x — O | double precision | tiguous registers tion is completed value in the top node
addition containing oper- register block) and
Double and 1—its value operand 2 (the value
precision o is in the range in the first two regis-
(a:zzd.itt;ig)n ax 0 ... 99,999,999 ters othek;niidle
o o node block), then
Middle:) Middle:) places the result in
EMTH First of six regis- an operand is the fourth and fifth
1 ters in the block invalid or out of registers of the
described below range middle node block
Bottom:
appropriate EMTH
function code

Middle Node Block

Register Number Register Content

4x and 4x + 1 the value of operand 2, in the range 0 ... 99,999,999

4x + 2 a non-zero value indicates that an overflow condition exists
4x + 3and 4x + 4 the result of the double precision addition

4x +5 not used but must be configured

GM-A120-LDR Enhanced Instructions 89

Extended Math Instructions (continued)

Inputs

Outputs

Instruction Structure o Nodes Function
(0)
Top: Top: Top!
ON initiates the First of two con- ON when calcula- Subtracts operand 2
— 4x — O/| double precision | tiguous registers | tion is completed (the value in the first
subtraction containing oper- and second registers
Double and 1—its value h h
- o in the middle node
preaision is in the range block) from operand
(32-bit) 4 — O 0 ... 99,999,999 -
" 1 (the value in the
subtraction
Middle: Middle: top node block), then
First of six regis- | operand = operand | Places the result in
EMTH | o ters in the block 1 2 the third and fourth
2 described below registers of the
middle node block
Bottom: Bottom:
appropriate EMTH | operand < operand
function code 1 2
Middle Node Block
Register Number | Register Content
4x and 4x + 1 the value of operand 2, in the range 0 ... 99,999,999
4x + 2 and 4x + 3 | the result of the double precision subtraction
4x + 4 non-zero value indicates that an out-of-range condition exists
4x +5 not used but must be configured
Top: Top: Top:
ON initiates the | First of two con- ON when calcula- Multiplies operand 1
double precision | tiguous registers tion is completed (the value in the top
- 4x — O multiplication containing oper- node register block)
Double and 1, whose val- by operand 2 (the
recision ue is in the range value in the first two
fnultiplication 4 — O 0... 99,999,999 registers of the
middle node block),
. . then places the re-
Middle: Middle: sult in the third,
EMTH First of six regis- | an operand is fourth. fifth. and sixth
3 tersin the block | out of range registérs of the

described below

Bottom:
appropriate EMTH
function code

middle node block

Middle Node Block

Register Number

Register Content

4x and 4x + 1

the value of operand 2, in the range 0 ... 99,999,999

4x +2,4x + 3,
4x +4,and 4x + 5

the result of the double precision multiplication

90 Enhanced Instructions

GM-A120-LDR

PRE

Extended Math Instructions (continued)

Inputs

Outputs

Instruction Structure o Nodes Function
Procy
Top: Top: Top‘U’ .
ON initiates the First of two con- ON when calcula- gﬁ\gd\?;uoep?;?ﬂs t1op
— 4x — O | double precision | tiguous registers | tion is completed node register block)
division containing oper-
Double and 1—its value by operand 2 (the
- e first two registers in
precision o) is in the range the middle node
division ax 0...99,999,999 block), then places
Middle: Middle: Middle: the result in the
ON = remainder | First of six regis- | an operand is third and fourth reg-
EMTH | 0| isstoredasa ters in the block | out of range isters of the middle
4 fraction described below node block and the
OFF = remainder remainder in the
is stored as a Bottom: fifth and sixth regis-
whole number appropriate EMTH| Bottom: ters of the middle
function code operand 2 = 0 node block
Middle Node Block
Register Number | Register Content
4x and 4x + 1 the value of operand 2, in the range 0 ... 99,999,999
4x +2and 4x + 3 the result (quotient) of the double precision division
4x +4and4x + 5 the remainder of the double precision division
Top: Top: Top:
| axorax | o ONinitiatesthe | First of two regis- | ON when calcula- Calculates the
X or ax v operation ters containinga | tion is completed square root of the
source value in source value in the
the range top node registers
Square root 4 L o 0. 99%991999 and stores the result
X in the middle node
Middle: Middle: registers
First of two regis- | source value
EMTH ters where the re- | is out of range
5 sult is stored in
the fixed-decimal
format:
1234.5600
Bottom:
appropriate EMTH
function code
Top: Top: Top:
— 8xor4x — O | ON initiates the First of two regis- | ON when calcula- Calculatestthz?th
\/ operation ters containinga | tion is completed square root ot the
P! h source value in the
source value in f
Process the range top node registers,
square root 4 — O 0 ... 99 999 999 linearizes it by muilti-
R ! plying it by 63.9922
)) (the square root of
Middle: Middle: 4095), then stores
EMTH First of two regis- | source value the linearized result
6 ters where the is out of range in the middle node

linearized result
is stored

Bottom:
appropriate EMTH
function code

registers

Process square
roots are often used
in PID2 operations

GM-A120-LDR

Enhanced Instructions

91

Extended Math Instructions (continued)

Instruction| Structure Inpzlt)lts Nodes Outputs Function
(©)
Top: Top: Top:
ON initiates a First of two con- ON when calcula-
I - axorax — O/ logarithmic tiguous registers tion is completed Performs a base 10
operation containing a logarithmic opera-
Logarithm source value in tion on the value in
the range the source registers
4 = O 0 ... 99,999,999 in the top node,
then stores the
Middle: Middle: result in the middle-
A holding register an error has node register
EMTH where the resultis | been detected
7 stored or avalue is
out of range
Bottom:
appropriate EMTH
function code
Top: Top: Top:
ON initiates a A single register ON when calcula-
| — 38xor4x — O logarithmic that contains a tion is completed Performs a base 10
operation sourcelvalue antilogarithmic op-
) . §tored in .the eration on the value
Antilogarithm fixed decimal fqr- in the source regis-
a“ =0 mhat 1.234 and in ter and stores the
E) e r;\r;%% result in the middle-
e node registers in
EMTH Middle: Middle: the fixed-decimal
8 First of two con- an error has been | format:
tiguous registers detected or a val- 12345678
where the resultis | ueis out of range
stored
Bottom:
appropriate EMTH
function code
Top: Top: Top:
ON initiates the | First of two con- ON when calcula- Conygrts a double-
conversion tiguous registers tion is completed precision |ntegerl
containing a dou- valus into a 32-bit
I — 4 — O ble-precision floating point value
Integer-to- integer source ﬁ]nﬁztﬁ:i?j t;nedresult
floating point value fourth registers of
conversion 4x Middle: the middle-node
First in a block of block
four contiguous
EMTH holding registers The first two regis-
9 Bottom: ters in the block are
" not used*
appropriate EMTH
function code
*Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 9 instruction.
I 1 4 Lo Top: Top: Top: Adds the double-
. ON |n|t|laFes Elrst of twolcon- QN Yvhen calcula- precision integer val-
Integer + floating the addition tiguous registers tion is completed | g in the top- node
point addition containing a dou- register block and
ax ble-precision the FP value in the
integer value first two registers in
Middle: the middle-node
EMTH First in a block of block tlhen stores the
10 four contiguous result in the thllrd
holding registers and fourlth registers
of the middle-node
Bottom: block
appropriate EMTH
function code

92 Enhanced Instructions

GM-A120-LDR

PRE

Extended Math Instructions (continued)

Instruction| Structure Inpzlt)lts Nodes Outputs Function
Top: Top: Top (G)
ON initiates the| First of two con- ON when calcula- Sulbtralctshth;-:: FP
| — 3xordx — subtraction tiguous registers tion is completed value in the first two
. e registers of the
Integer - floating containing a middle-node block
point subtraction double-precision from the inte |
integer value) ger vai-
ax ue in the top-node
Middle: register block then
First in a block of stores the result in
four contiguous thelthlrd and fourth
EMTH holding registers registers of the
il middle-node block
Bottom:
appropriate EMTH
function code
Top: Top: Top: o
ON initiates the| First of two con- ON when calcula- L’;A:Litlln?élisrg;?sion
. | — 3xord4x — multiplication ggﬁto:iﬁi:;g:ters tion is completed integer valus in the
Integer x floating double-precision top-node register
point i block by the FP val-
o integer value ck Dy th
multiplication ax ue in the first two
Middle: registers of the
First in a block of middle-node block,
four contiguous then stores the
EMTH registers product in the third
12 and fourth registers
Bottom: of the middle-node
appropriate EMTH block
function code
Top: Top: Top: =
ON initiates the| First of two con- ON when calcula- | Divides the double-
1 x division tiguous registers tion is completed | Precision integer val-
containing a uein the top-node
Integer/floating double-precision register block by the
point division integer value FP value in the first
ax two registers of the
Middle: middle-node block,
First in a block of then stores the
four contiguous quotient in the third
EMTH holding registers and fourth registers
13 of the middle-node
Bottom: block
appropriate EMTH
function code

Top: Top: Top:

ON initiates the| First of two con- ON when calcula- | g iracts the dou-
floating point - I — 4x subtraction tigutoulslregisters tion is completed ble-precision integer
integer gggtiilglggiit valge in the first two
subtraction value registers of the

ax middle-node block
. from the FP value in
Middle: the top-node register
Firstin alblock of block, then stores
EMTH four contiguous the result in the third
14 holding registers and fourth registers
of the middle-node
Bottom: block
appropriate EMTH
function code

GM-A120-LDR

Enhanced Instructions

93

Extended Math Instructions (continued)

Inputs

Outputs

Bottom:
appropriate EMTH
function code

Bottom:
0 = + integer value
1 = - integer value

Instruction Structure o Nodes Function
(0)
Top: Top: Top!
ON initiates the | First of two con- ON when calcula- Divides the double-
— 3xorax — O division tiguous registers tion is completed precision integer val-
floating point/ containing a ue in the first two
integer division floating point registers of the
value middle-node block
ax by the FP value in
Middle: the top-node register
First in a block of block, then stores
EMTH four contiguous the quotient in the
15 holding registers third and fourth reg-
isters of the middle-
Bottom: node block
appropriate EMTH
function code
Top: Top: Top: Compares the dou-
ON initiates the | First of two con- ON when calcula- ble-precision inte-
comparison tiguous registers tion is completed ger value with the
— 8xorax — O containing a dou- floating point value
Integer-floating ble-precision inte- Middle: (in the first two reg-
point ger value used with the isters of the middle-
comparison node block), then
=0 Middle: %cgits;?eiﬁfttaﬁe indicates the rela-
First in a block of relationshi tionship via the
four contiguous P middle and bottom
EMTH | O holding registers | Bottom: outputs (see table
16 used with the below)
Bottom: middle output to
appropriate EMTH | indicate the value The third and fourth
function code relationship registers in the
middle-node block
are not used but
must be configured
EMTH 16 Outputs
Middle Output State | Bottom Output State Value Relationship
ON OFF I>FP
OFF ON I <FP
ON ON I=FP
Top: Top: Top: R
ON initiates the | First of two con- ON when calcula- ng;’::;ti}:ﬁ}f:txﬁ,g
— 4x — O conversion tiguous registers tion is completed and fourth registers
floating point- containing a dou- of the middle-node
to-integer ble-precision inte- block into a double-
conversion 4 ger precision integer val-
X . . ue and stores the
M/dd{e. converted value in
First in a block of the top-node
EMTH | O four contiguous registers
17 holding registers

The first and second
registers in the
middle node are not
used but must be
configured*

*Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 17 instruction.

94 Enhanced Instructions

GM-A120-LDR

PRE

Extended Math Instructions (continued)

Outputs

Instruction| Structure Inpzlt)lts Nodes Function
(0)
Top: Top: Top!
ON initiates the | First of two con- ON when calcula- Adds FP value 1 (in
. . - ax [~ O subtraction tiguous registers tion is completed the top-node regis-
floating point containing ter block) and FP
addition FP value 1 value 2 (from the
Middle: first two registers of
ax First in a block of the middle-node
four contiguous block), then stores
holding registers the sum in the third
EMTH and fourth registers
18 Bottom: Slfcf:l? middle-node
appropriate EMTH
function code
Top: Top: Top:
ON initiates the | First of two con- ON when calcula-

- ax O multiplication tiguous registers | tion is completed Subtracts FP value 2
floating point containing FP (stored in the first and
subtraction value 1 second registers of

the middle-node

4x Middle: block) from FP value
First in a block of 1 (in the top-node
four contiguous register block), then

EMTH holding registers stores the difference

19 in the third and fourth
Bottom: registers of the
appropriate EMTH middle-node block
function code

Top: Top: Top:

ON initiates the | First of two con- ON when calcula- Multiplies FP value 1
| o division tiguous registers | tion is completed (in the top-node reg-
I @ containing FP ister block) by FP

floating point value 1 value 2 (stored in the
multiplication) first and second reg-
ax Middle: isters of the middle-
First in a block of node block), then
four contiguous stores the product in
holding registers the third and fourth
EMTH registers of the
20 Bottom: middle-node block
appropriate EMTH
function code
Top: Top: Top:
ON initiates the | First of two con- ON when calcula-

. ax L o subtraction tiguous registers | tion is completed Divides FP value 1
containing FP (in the top-node reg-
value 1 ister block) by FP

floating point value 2 (stored in the
division 4x Middle: first and second reg-
Firstin a block of isters of the middle-
four contiguous node block), then
EMTH holding registers stores the quotient in
21 the third and fourth
Bottom: registers of the
appropriate EMTH middle-node block
function code
GM-A120-LDR Enhanced Instructions

95

Extended Math Instructions (continued)

Outputs

Instruction| Structure '"rzl‘;ts Nodes Function
(©)
Top: Top: Top: Compares FP value
ON initiates the | First of two con- | ON when compari- | 1 (in the top-node
_ PR comparison tiguous registers | son is complete register block) and
floating point containing FP . FP value 2 (in the
9P value 1 Middle: first two registers of
comparison used with the the middle-node
4x — Middle: _bot_tom output to block), then indi-
Firstin a block of | indicate the value | cates the relation-
four contiguous relationship ship via the middle
holding registers . and bottom outputs
EMTH |- Bottom:
22 used with the (see table below)
Bottom: middle output to .
appropriate EMTH | indicate the value th?sttg:s iar\]ntcri]éourth
function code relationship middle node block
are not used but
must be configured
EMTH 22 Outputs
Middle Output State | Bottom Output State Value Relationship
ON OFF FP value 1 > FP value 2
OFF ON FP value 1 < FP value 2
ON ON FP value 1 = FP value 2
Top: Top: Top: Pertforms at_ square
ON initiates the First of two con- | ON when calcula- {ﬁg FOFE?I:LJZ%OS]Q
)) — ax operation tiguoqs_registers tion is completed top-node block and
zoa:rrleg r%%'p‘ ng:mmg anFp stores the result in
qu e the third and fourth
ax Middile: registers of the
First in a block of middle-node block.
four contiguous
holding registers The first and sec-
EMTH Bottom: ond registers in the
23 appropriate EMTH middle-node block
function code are not used but
must be
configured*
*Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 23 instruction.
Top: Top: Top: Changes the sign of
ON initiates the First of two regis- | ON when opera- the FP value in the
_ _ - 4x — sign change ters containing an | tion is completed top-node register
ﬂ_oatlng point operation FP value block and stores the
sign change result in the third
ax Middle: and fourth registers
First in a block of of the middle-node
four contiguous block.
holding registers
EMTH The first and second
24 Bottom: registers of the
appropriate EMTH middle-node block
function code are not used
Top: Top: Top:
| L ON loads JU into| Not used ON when loading Loads the FP value
. . the middle- .) is completed of pi into the third
floating point JT register block Middile:) and fourth registers
loading First of four regis- of the middle-node
ax ters where the block; the first and
FP value of pi is second registers of
loaded the middle-node
EMTH Bottom: block are not used
25 appropriate EMTH
function code

96 Enhanced Instructions

GM-A120-LDR

PRE

Extended Math Instructions (continued)

Inputs

Outputs

Instruction Structure 0 Nodes Function
V)
Top: Top: Top:
ON initiates the First of two con- ON when calcula- . :
calculation tiguous registers | tion is completed | Calculates in radials
) ! - ax containing the FP the sine of the float-
floating point value of an angle ing point value in the
sine of an in radians; the top-node registers
angle magnitude is and stores the result
4x < 65536.0 in the third and fourth
registers of the
Middle: middle-node block.
First in a block of
EMTH four contiguous The first and second
26 holding registers registers of the
middle-node block
Bottom: are not used but must
appropriate EMTH be configured.*
function code
* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 26 instruction.
Top: Top: Top:
ON initiates the First of two con- ON when calcula- | Calculates in radians
— ax calculation tiguous registers | tion is completed the (_:osine_of the)
floating point containing the FP floating point value in
cosine of an value of an angle the top-node registers
angle in radians; the and stores the result
4x magnitude is in the third and fourth
< 65536.0 registers of the
Middle: middle-node block.
Eth First in a block of The first and second
four contiguous registers of the
holding registers middle-node block
Bottom: are not _used bft must
appropriate EMTH be configured.
function code
* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 27 instruction.
Top: Top: Top:
ON initiates the First of two con- QN when calcula- | g 10uiates in radians
— ax calculation tiguous registers | tion is completed | o tangent of the
i i containing the FP floating point value
floating point value of an angle ; op '
tangent of an in radians; the in the top-node regis-
angle ax magnitude is ters and stores the
< 65536.0 result in the third and
fourth registers of the
Middle: middle-node block.
EMTH First in a block of
28 four contiguous

holding registers

Bottom:
appropriate EMTH
function code

The first and second
registers of the
middle-node block
are not used but must
be configured.*

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 28 instruction.

GM-A120-LDR

Enhanced Instructions

97

Extended Math Instructions (continued)

Outputs

four contiguous
holding registers

Bottom:
appropriate EMTH
function code

Instruction| Structure '"rzl‘;ts Nodes Function
W)
Top: Top: Top:
ON initiates the First of two reg- ON when calcula-
calculation isters containing tion is completed . .
floating point — 4% the FP value of Calculates in radians
arcsine of an the sine of an the arcsine of the
angle angle between floating point value
/2. 7)/2 in the top-node regis-
4ax o ters and stores the
radians; ?he value result in the third and
must be in the fourth registers of the
EMTH range -1.0...+1.0 middle-node block;.
29 If\:/{:g?l,ia block of The first and second
four contiguous registers of the
holding registers middle-node block
are not used but must
Bottom: be configured.*
appropriate EMTH
function code
* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 29 instruction.
Top: Top: Top:
ON initiates the First of two reg- ON when calcula- | Calculates in radians
. . calculation isters containing tion is completed the arc cosine of the
floating point n @ - the FP value of floating point value
arc cosine of the cosine of an in the top-node regis-
an angle angle between ters and stores the
ax 0... TU radians; in result in the third and
the range of fourth registers of the
-1.0..+1.0 middle-node block.
Middle: .
E'g.(l)-H First in a block of The first and second
four contiguous re_gdlcsj}ers 'g thbel .
h " middle-node blocl
holding registers are not used but must
Bottom: be configured*
appropriate EMTH
function code
* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 30 instruction.
Top: Top: Top:
ON initiates the First of two con- ON when calcula-
— ax — calculation tiguous registers tion is completed Calculates in radians
. X containing the FP the arctangent of the
floating point value of the tan- floating point value
arctangent of gent of an angle in the top-node regis-
an angle 4x between ters and stores the
-J0/2 ... J0/2 result in the third and
radians fourth registers of the
EMTH Middle: middle-node block.
31 First in a block of The first and second

registers of the

middle-node block
are not used but must
be configured.*

* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 31 instruction.

98

Enhanced Instructions

GM-A120-LDR

Extended Math Instructions (continued)

Inputs

Outputs

Instruction Structure 0 Nodes Function
Top: Top: Top‘.u) Converts the FP val-
ON initiates the First of two contig-| ON when conver- | ue in the top-node
floating point — ax conversion uous registers sion is completed | registers to an FP re-
radian%g- containing the FP presentation of that
d value of an angle value in radians, and
egree in radians stores the conversion
conversion 4x) in the third and fourth
Midle: registers of the
First in a block of middle-node block.
four contiguous
EMTH holding registers The first and second
32 registers of the
Bottom: middle-node block
appropriate EMTH are not used but must
function code be configured.*
* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 32 instruction.
Top: Top: Top: Converts the FP val-
ON initiates the First of two con- ON when conver- | ue in the top-node
. . — ax conversion tiguous registers | sion is completed | registers to an FP
floating point containing the FP representation of that
deg_ree-to- value of an angle value in degrees, and
radian in degrees stores the converted
conversion ax value in the third and
Middle: fourth registers of the
First in a block of middle-node block.
EMTH four_contigqous
33 holding registers The first and second
registers of the
Bottom: middle-node block
appropriate EMTH are not used but must
function code be configured.*
* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 33 instruction.
Top: Top: Top: f
ON initiates the First of two regis- | ON when calcula- i?atls:zhe FP value
: o PR p-node regis-
calculation ters containing an | tion is completed .
floating point 7 ax [FP value ters to the integer
number raised power spec_lfled in the
to an inte Middle: second register of the
ger st iddle-node block
power First in a block of mi .
4x four contiguous and stores the result
holding registers in the third and fourth
registers of the
middle-node block;
EMTH Bottom: the first register in the
ad appropriate EMTH middle node must be
function code set to zero
Top: Top: Top: Calculates the expo-
ON initiates the First of two con- ON when calcula- | nential value of the
floating point — ax calculation tiguous registers | tion is completed FP number in the
exponential containing an FP top-node registers
value in the range and stores the result
-87.34 ... +88.72 in the third and fourth
4x . registers of the
Middle: middle-node block.
First in a block of
EMTH Lo(;f:ji%%n:legglf;u;s The first and second
35 registers of the
Bottom: middle-node block
appropriate EMTH are not used but
function code must be configured.*
* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 35 instruction.
GM-A120-LDR Enhanced Instructions 99

Extended Math Instructions (concluded)

Instruction| Structure '"rzl‘;ts Nodes Outputs Function
(0)
Top: Top: Top:
. . ON initiates the First of two con- | ON when calcula- | Calculates the natu-
floating point | | 4 | o calculation tiguous registers | tion is completed | ral logarithm of the
containing an FP FP value in the top-
natural value > 0 node registers and
logarithm stores the result in
ax Middle: the third and fourth
First in a block of registers of the
four contiguous middle-node block
EMTH holding registers The first and second
36 registers of the
Bottom: middle-node block
appropriate EMTH are not used but
function code must be configured.*
* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 36 instruction.
Top: Top: Top: Calculates the com-
ON initiates the First of two con- ON when calcula- | mon logarithm of the
; f calculation tiguous registers | tion is completed FP number in the
floating point
I — 4 +— O containing an FP top-node registers
value >0 and stores the result
l(;ogr;mﬁnm in the third and fourth
Middle: registers of the
4x First in a block of middle-node block.
four contiguous
EMTH holding registers The first and second
37 registers of the
Bottom: middle-node block
appropriate EMTH are not used but
function code must be configured.*
* Note If you want to preserve registers, you may store the double-precision
integer value in the first and second registers of the middle-node block and
not configure a top-node register block in the EMTH 37 instruction.
Top: Top: Top:
ON initiates the Not used ON when calcula- Er:ﬁ;?ﬁit:jarr: ilgge%%?
Error report calculation tion is completed . g
log [— O the middle-node
Middle: Middle: block, and the fourth
First of four regis- | 1 = nonzeros in register is always set
ters that contain the register to zero
4 =0 the error log data | O = all bits set to
(see below) zero The first and second
registers in the
EMTH Bottom: middle-node block
38 appropriate EMTH are not used, but
function code must be configured.
Register 4x + 2 in the Middle Node of EMTH 38
12‘13‘14‘15‘16‘
|) L FP underflow
— Function code of last logged error
— FP overflow
__ Invalid FP value
or operation
— Exponential function
power too large
— Integer/FP conversion error

100 Enhanced Instructions

GM-A120-LDR

PRE

